期刊文献+

基于RBF神经网络的NPP运行状态趋势预测 被引量:5

Trend Prediction of NPP Operating Conditions Based on RBF Neural Network
下载PDF
导出
摘要 针对当前核动力装置事故判断采用传统阈值报警方法难以实现早期预警这一问题,提出根据状态参数的变化趋势、利用RBF神经网络良好的局部特性对核动力装置运行状态趋势进行预测的方法。对正常瞬变和小破口失水事故下运行状态趋势进行了预测,结果表明,RBF神经网络能很好地预测状态的变化,与实测值拟合较好,能实现事故的早期预警。 Considering that the fault diagnosis of nuclear power plant (NPP) adopting the traditional threshold way can hardly realize early warning, the prediction model according to the variation trend of state parameter and making use of the good local characteristic of RBF neural network for predicting the trend of NPP operating conditions was introduced. The operating condition trends under the normal transition and the small-break loss-of-coolant accident were predicted, The results show that RBF neural network can predict the parameters chane and the predicted value matches with the real value.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2013年第11期2103-2107,共5页 Atomic Energy Science and Technology
关键词 核动力装置 运行状态 RBF神经网络 趋势预测 Key words., nuclear power plant operating condition RBF neural network trend prediction
  • 相关文献

参考文献7

  • 1WAYNE C J,JOHN G W. Safety control of nu-clear power operations using self-programmingneural networks [J]. Nuclear Science and Engi-neering, 1992, 114 : 42-54. 被引量:1
  • 2HAN G K, SOON H C,BYUNG H L. Pressur-ized water reactor core parameter using an artifi-cial neural network[J]. Nuclear Science and En-gineering, 1993,113 : 70-76. 被引量:1
  • 3ZHI C G,UHRIG R E. Use of artificial neuralnetworks to analyze nuclear power performance[J]. Nuclear Technology* 1992, 99: 36-42. 被引量:1
  • 4UHRIG R E. Use of neural network in nuclearpower plant diagnostics [.O'] // Conference onAvailability Improvements in NPP. Madrid :DOE/ER, 1989: 10-16. 被引量:1
  • 5BARTLETT E B’. UHRIG R E. Nuclear powerstation status diagnosis using an artificial neuralnetwork [J]. Nuclear Technology, 1992,97:272-281. 被引量:1
  • 6熊晋魁,谢春玲,施小成,张洪国,孙铁利.RBF人工神经网络在核电厂故障诊断中的应用[J].核动力工程,2006,27(3):57-60. 被引量:9
  • 7周永,电力系统短期负荷预测的研究[D].西安:西安理工大学,2001. 被引量:1

二级参考文献3

共引文献8

同被引文献41

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部