期刊文献+

基于Hadoop的大矩阵乘法处理方法 被引量:8

Approach of large matrix multiplication based on Hadoop
下载PDF
导出
摘要 目前的矩阵乘法算法无法处理大规模和超大规模的矩阵,而随着MapReduce编程框架的提出,并行处理矩阵乘法成为解决大矩阵运算的主要手段。总结了矩阵乘法在MapReduce编程模型上的并行实现方法,并提出了实现高性能大矩阵乘法的策略———折中单个工作节点的计算量和需要网络传输的数据量。实验证明,并行实现算法在大矩阵上明显优于传统的单机算法,而且随着集群中节点数目的增多,并行算法会表现出更好的性能。 Large and very large matrix cannot be dealt by current matrix multiplication algorithms. With the development of MapReduce progranlming frame, parallel programs have become the main approaches for matrix computing. The matrix multiplication algorithms based on MapReduce were summarized, and an improved strategy for large matrix was proposed, which had a tradeoff in the data volume between the computation on single work node and the network transmission. The experimental results prove that the parallel algorithms outperform the traditional ones on the large matrix, and the performance will imorove with the increase of the c|lJ^t~r~
出处 《计算机应用》 CSCD 北大核心 2013年第12期3339-3344,3358,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61102136 61001013) 福建省自然科学基金资助项目(2011J05158 2010J01351) 深圳市战略性新兴产业发展专项资金资助项目(JCYJ20120618155655087)
关键词 大矩阵 矩阵乘法 矩阵运算 MAPREDUCE HADOOP 并行计算 海量数据 large matrix matrix multiplication matrix computation MapReduce Hadoop concurrent computation massive data
  • 相关文献

参考文献18

  • 1吴吉义,傅建庆,平玲娣,谢琪.一种对等结构的云存储系统研究[J].电子学报,2011,39(5):1100-1107. 被引量:49
  • 2DEANJ, GHEMAWAT S. MapReduce: simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51 (I): 107 -113. 被引量:1
  • 3The Apache Software Foundation. Apache Hadoop[EB/OL].[2012 - 10 - 18]. http://hadoop. apache. org!. 被引量:1
  • 4GHEMAWAT S, GOBIOFF H, LEUNG S. The google file system[C) / / SOSP 2003: Proceedings of the nineteenth ACM Symposium on Operating Systems Principles. New York: ACM Press, 2003: 29 -43. 被引量:1
  • 5ZHAO W Z, MA H F, HE Q. Parrallel k-means clustering based on Map Reduce l C] 1/ Proceedings of the 1 st International Conference on Cloud Computing. Berlin: Springer-Verlag, 2009: 674 - 679. 被引量:1
  • 6CATANZARO B, SUNDARAM N, KEUTZER K. Fast support vec?tor machine training and classification on graphics processors[C] 1/ ICML 2008: Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008: 104 - 111. 被引量:1
  • 7NORSTAD 1. A MapReduce algorithm for matrix multiplication[EBI OL]. 12012 - 11 - 02]. http://www. norstad. org!matrix-multiplyl index. html,. 被引量:1
  • 8LIN C, HUANG Z H, YANG F, et al. Identify content quality in online social networks[J). lET Communications, 2012, 6( 12): 1618 -1624. 被引量:1
  • 9SUN Z G, LI T, RISHE N. Large-scale matrix factorization using Map Reduce[C] II ICDMW'lO: Proceedings of the 2010 IEEE In?ternational Conference on Data Mining Workshops. Washington, DC: IEEE Computer Society, 2010: 1242 -1248. 被引量:1
  • 10LIU C, YANG H-C, FANJ L, et al. Distributed nonnegative ma- trix factorization for Web-scale dyadic data analysis on Map Reduce[C) / / WWW 2010: Proceedings of the 19th International Confer?ence on World Wide Web. New York: ACM, 2010: 681 -690. 被引量:1

二级参考文献17

  • 1Sanjay Ghernawat, Howard Gobioff, Shun-Tak Leung. The Google file system E A] .Proc of the 19th ACM Symposium on Operating Systems Principles [C]. New York: ACM Press, 2003.29 - 43. 被引量:1
  • 2Dhruba Borthaku. The Hadoop Distributed File System: Architecture and Design E EB/OL 1. http://hadoop, apache, org/ common/docs/r0.16.0/hdfs_ design, pdf, 2011. 被引量:1
  • 3Hbase Development Team. Hbase: Bigtable-Like Slructured Storage for Hadoop Hdfs [ EB/OL ]. http://wiki, apache. org/hadoop/Hbase, 2011. 被引量:1
  • 4Amazon. Amazon Simple Storage Service[EB/OL]. http:// www. amazon, com/s3,2011. 被引量:1
  • 5Yunhong Gu, Robert L Grossman. Sector and sphere: The design and implementation of a high-performance data cloud ~ J]. Philosophical Transactions of the Royal Society, 2009, 367A: 2429 - 2445. 被引量:1
  • 6Robert L Grossman, Yunhong Gu.Data mining using high per- formance data clouds: Experimental studies using sector and sphere [ A ]. Proc of the 14th ACM SIGKDD [ C ]. Las Vegas: ACM Press, 2008.920 - 927. 被引量:1
  • 7James Bmberg,Rajkumar Buyya,Zahir Taft. Creating a 'cloud storage' mashup for high performance, low cost content delivery [A]. Proc of the 6th International Conference on Service- Oriented Computing [ C ]. ICSOC 2008, Australia, Springer, LNCS 5472,2009. 178- 183. 被引量:1
  • 8James Broberg, Zahir Taft. MetaCDN: Harnessing storage clouds for high performance content delivery [A]. Proc of the 6th International Conference on Service-Oriented Computing [C], ICSOC 2008, Australia, Springer, LNCS 5364,2008.730 - 731. 被引量:1
  • 9Kevin D Bowers, Ari Juels, Alina Oprea. HAIL: A High- Availability and Integrity Layer for Cloud Storage I EB/ OL ]. http: / / eprint, iacr. org/, 2011. 被引量:1
  • 10David Tarrant, Tim Brody, Leslie Cart. From the Desktop to the Cloud: Leveraging Hybrid Storage Architectures in Your Repository [ EB/OL ]. http://eprints, ecs. soton, ac. uk/ 17084/1/or09. pdf, 2011. 被引量:1

共引文献48

同被引文献48

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部