期刊文献+

模糊命题的多维三层逻辑的语义 被引量:1

Semantics of Fuzzy Propositional Multi-Dimension Three-Layer Logic
下载PDF
导出
摘要 考虑模糊概念与模糊逻辑的多种性,基于带对偶非的三角模逻辑,提出了一种新的模糊命题的逻辑,称为模糊命题的多维三层逻辑.特别地,记n维三层逻辑为Ln-3-3.首先,引入了模糊命题的首层n维真向量、中层3维真向量、末层经典真向量的概念;然后,提出了Ln-3-3逻辑悲观c-重言式、Ln-3-3逻辑乐观c-重言式、Ln-3-3逻辑期望c-重言式、Ln-3-3逻辑重言式、Ln-3-3逻辑悲观c-经典重言式、Ln-3-3逻辑乐观c-经典重言式与Ln-3-3逻辑期望c-经典重言式概念,并且讨论了Ln-3-3逻辑的性质.最后提供了LN-L2-3-3逻辑的规律. Considering multiple characteristics of fuzzy concept and fuzzy logics, based on trian- gle norms with involution negation, the paper proposes a new kind of fuzzy propositional logics. It is called fuzzy propositional multi-dimension three-layer logic. In particular, n-dimension three-layer logic is denoted by Ln-3-3. Firstly, some concepts for fuzzy propositions, such as the first-layer n-dimension truth-vector, the middle-layer 3-dimension truth-vector and the end-layer classical truth-vector, are introduced. Then, some concepts, such as Ln-3-3 logic pessimism c- Tautology, Ln-3-3 logic optimism c-Tautology, Ln-3-3 logic expectation c-Tautology, Ln-3-3 logic Tautology, Ln-3-3 logic pessimism c-classical Tautology, Ln-3-3 logic optimism c-classical Tautology and Ln-3 3 logic expectation c-classical Tautology also are presented, and the proper- ties of Ln-3-3 logic are discussed. Finally, the logical laws of LN-L2-3-3 are provided.
出处 《计算机学报》 EI CSCD 北大核心 2013年第11期2283-2289,共7页 Chinese Journal of Computers
基金 国家自然科学基金(61273044)资助~~
关键词 模糊逻辑 多维三层逻辑}首层n维真向量 中层3维真向量 末层经典真向量 fuzzy logic multi-dimension three-layer logic the first-layer n-dimension truth-vectorsthe middle-layer 3-dimension truth-vector the end-layer classical truth-vector
  • 相关文献

参考文献31

  • 1Lukasiewicz J, Tarski A. Untersuchungen uber den aussa genkalkul. Comptes Rendus des Seances de la Sociele des Lettres des Varsovie, Classe Ⅲ, 1930, 23: 30-50. 被引量:1
  • 2Nilsson N. Probability logic. Artificial Intelligence, 1986, 28(3) : 71-78. 被引量:1
  • 3Hailperin T. Sentential Probability Logic. London: Associated University Press, 1996. 被引量:1
  • 4Campos C, Cozman F, Luna J. Assembling a consistent set of sentences in relational probabilistic logic with stochastic independence. Journal of Applied Logic, 2009, 7(10) : 137- 154. 被引量:1
  • 5Hailperin T. Probability logic. Notre Dame Journal of Formal Logic, 1984, 25(1): 198-212. 被引量:1
  • 6Dubois D, Prade H. Necessity measure and the resolution principle. IEEE Transactions on Systems, Man, and Cybernetics, 1987, 17(3): 474-478. 被引量:1
  • 7Doubois D, Prade H. Possibility theory, probability theory and multiple valued logics~ A clarification. Annals of Mathe- matics and Artificial Intelligence, 2001, 32(1-4): 35-66. 被引量:1
  • 8Zadeh L. Fuzzy sets. Information and Control, 1965, 8(3): 338-353. 被引量:1
  • 9Zadeh L. Fuzzy logic and approximate reasoning. Synthese, 1975, 30(3-4) : 407-428. 被引量:1
  • 10Godel K. Zum intuitionistischen aussagenkalkul. Anzeiger Akademie der Wissenschaften in Wien, 1932, 69:65-66. 被引量:1

二级参考文献2

共引文献193

同被引文献30

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部