摘要
对激光冲击强化过程中激光参数的选择进行了优化。提出了基于人工神经网络的控制激光冲击强化效果的新方法,引入神经网络对试件经激光冲击后的表面质量类型进行识别。对2024-T62铝合金的研究及试验表明,采用该方法能够有效地提高合格试件的成品率。
An optimizing method of laser parameters is proposed. An artificial neural network (ANN ) method for control of effect of laser shock-processing(LSP) is also proposed. A multilayered neural network is trained to identify types of surface quality of laser shock - processing zones. From the verification of aluminium alloy 2024 - T62, it is proved that this method could make the rate of qualified parts after LSP improve effectively.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2000年第12期89-94,共6页
Journal of Mechanical Engineering
基金
江苏省应用基金
教育部博士点基金资助项目
关键词
参数优选
神经网络
激光冲击强化
表面质量
Optimization of laser parameters Neural network Laser shock-processing(LSP) Surface qualities Control of effect