期刊文献+

基于标签相似度的协作者推荐研究 被引量:1

Tag similarity-based cooperator recommendation
下载PDF
导出
摘要 针对目前虚拟协作社区中重视交互行为研究,缺乏协作行为研究的问题,从项目和协作者的角度出发研究社区的标签关系,提出根据协作者与项目的发生关系和项目标签集合获取基于协作者的标签共生信息,并用该共生信息来计算标签之间相似度,然后提出一种新的协作者工作偏好模型。结合协作者工作偏好和标签相似度研究协作者之间的关系,以及协作者与项目之间的关系,预测可能参与项目的协作者,提出协作者推荐算法。通过使用开源社区www.codeplex.com的数据进行实验,并与其他推荐算法进行比较,证明本文提出的推荐算法能较好地应用于协作者推荐。 At present, researches on virtual collaborative community emphasize more on interactive behavior but ignore collaborative behavior. To address this issue, we study the tag relationship from the view oI the project and cooperator, aria obtain me co- operator-based co-occurrence information by the cooperator-project relationship and project tag collection. Then we use this co-oc- currence information to calculate the similarity between tags. Based on these, this paper also introduces the method of measuring the similarity of work preferences between cooperators and calculating the matching degree between cooperators and projects. The acquired information can then be used in cooperator recommendation algorithrn~ Finally, by using the open source community data from www. codeplex, com and comparing with other algorithms, this paper tests and verifies that the proposed recommendation algorithm can well forecast collaborative behavior.
作者 陈翔 邱秀珍
出处 《中国科技论文》 CAS 北大核心 2013年第10期974-980,共7页 China Sciencepaper
基金 国家自然科学基金资助项目(71102111)
关键词 标签相似度 虚拟协作 协作者推荐 开源社区 tag similarity virtual collaborative cooperator recommendation open source community
  • 相关文献

参考文献12

  • 1Maamar Z, Hacid H, Huhns M N. Why web services need social networks [J]. IEEE Internet Comput, 2011, 15(2): 90-94. 被引量:1
  • 2Liu Zhaobin, Qu Wenyu, Li Haitao, et al. A hybrid collaborative filtering recommendation mechanism for P2P networks [J]. Future Gener Comput Syst, 2010, 26(8) : 1409-1417. 被引量:1
  • 3Meo P D, Nocera A, Terracina G, et al. Recommenda- tion of similar users, resources and social networks in a social intrenet working scenario [J]. Inform Sci, 2011, 181(7) 1285-1305. 被引量:1
  • 4Ricci F, Shapira B. Recommender Systems Handbook [M]. Newyork Springer, 2011. 被引量:1
  • 5Sen S, Vig J, Riedl J. Tagommenders: connecting us- ers to items through tags [C]//Proceedings of the 18th international conference on world wide web. Madrid, Spain, ACM, 2009: 671-680. 被引量:1
  • 6Hung C C, Huang Y C, Hsu J Y, et al. Tag-based us er profiling for social media recommendation [C]// Workshop on Intelligent Techniques for Web Personali- zation b- Recommender Systems at AAAI2008. Chica- go, Illinois, 2008. 被引量:1
  • 7Markines B, Cattuto C, Benz D, et al. Evaluating simi- larity measures for emergent semantics of social tagging[C]//Proceedings of the 18th International Conference on World Wide Web. New York, ACM, 2009: 641-650. 被引量:1
  • 8Xu Kaikuo, Chen Yu, Jiang Yexi, et ah A comparative study of correlation measurements for searching similar tags [C]//Advanced Data Mining and Applications. Chengdu, China, 2008: 709-716. 被引量:1
  • 9邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 10Chedrawy Z, Abidi S S R. An adaptive personalized recommendation strategy featuring context sensitive content adaptation [C]//Proceedings of Adaptive Hy- permedia and Adaptive Web-based Systems. Dublin, Ireland, 2006: 61-70. 被引量:1

二级参考文献10

  • 1J Schafer,J Konstan,J Riedl.Recommender systems in e-commerce[C].In:Proc of ACM E-Commerce.New York:ACM Press,1999.158-166 被引量:1
  • 2Champa Jayawardana,K Priyantha Hewagamage Masashito HIrakawa.A personalize information environment for digital libraries[J].Information Technology and Libraries,2001,20(4):185-196 被引量:1
  • 3J Konstan,B Miller,D Maltz,et al.GroupLens:Applying collaborative filtering to Usenet news[J].Communications of the ACM,1997,40(3):77-87 被引量:1
  • 4高凤荣.个性化推荐系统关键技术研究:[博士论文][D].北京:中国人民大学,2003 被引量:2
  • 5Greg Linden,Brent Smith,Jeremy York.Amazon.com recommendations:Item-to-Item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80 被引量:1
  • 6G Adomavicius,A Tuzhilin.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749 被引量:1
  • 7Chun Zeng,Chun-Xiao Xing,Li-Zhu Zhou,et al.Similarity measure and instance selection for collaborative filtering international[J].Journal of Electronic Commerce,2004,4(8):115-129 被引量:1
  • 8G Karypis.Evaluation of item-based top-N recommendation algorithms[C].In:Proc of CIKM 2001.New York:ACM Press,2001.247-254 被引量:1
  • 9Brendan Kitts,David Freed,Martin Vrieze.Cross-sell:A fast promotion-tunable customer-item recommendation method based on conditional independent probabilities[C].In:Proc of ACM SIGKDD Int'l Conf.New York:ACM Press,2000.437-446 被引量:1
  • 10KDD2000 Dataset[OL].http://www.ecn.purdue.edu/KDDCUP/data/,2005 被引量:1

共引文献147

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部