期刊文献+

含有自适应筛选系数的广义经验模态分解方法 被引量:2

Generalized Empirical Mode Decomposition with Adaptive Sifting Parameter
原文传递
导出
摘要 经验模态分解(EMD)是针对非线性和非平稳数据的有效分析方法,但是原始算法有多余分量、分量之间不完全正交等缺点.本文引入筛选系数λ将原始EMD算法推广为广义EMD算法,并且使用最小化正交条件来选取最优筛选系数.模拟数据和实际数据的分析结果显示,相比于原始EMD算法,该算法有效地减少了多余分量,更好地分解出了时间序列的趋势成分,而且提高了IMF成分序列之间的正交性.由于筛选系数是数据本身决定的,因此该算法比原始算法有更强的自适应性. Empirical mode decomposition is an efficient method for non-linear and non-stationary data. But original algorithm always produces redundant components, and orthogonaltiy is not ensured. This paper modifies the original EMD algorithm by choosing the optimal sifting parameter based on the orthogonal criterion in every sifting process. The numerical experiments show that, comparing with original algorithm, modified algorithm can reduce the redundant components efficiently, determine the trend component more accurately and improve the orthogonality between IMF components. As the sifting parameter is determined adaptively by data itself, the modified algorithm is more adaptive than original algorithm.
出处 《数理统计与管理》 CSSCI 北大核心 2013年第6期1002-1012,共11页 Journal of Applied Statistics and Management
关键词 EMD 筛选系数 广义EMD EMD, sifting parameter, generalized EMD
  • 相关文献

参考文献16

  • 1Titchmarsh E C. Introduction to the Theory of Fourier Integrals [M]. Oxford: Clarendon Press, 1937. 被引量:1
  • 2Chan Y T. Wavelet Basics [M]. Springer, 1995. 被引量:1
  • 3Classen T A C M, Mecklenbrauker W F G. The Wigner distribution-a tool for time-frequency signal analysis (I): Continuous time signals [J]. Philips Journal of Research, 1980, 35(3): 217-250. 被引量:1
  • 4Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903 995. 被引量:1
  • 5Huang N E, Wu M L, Qu W, et al. Applications of Hilbert-Huang transform to non-stationary financial time series analysis [J]. Applied Stochastic Models in Business and Industry, 2003, 19(3): 245-268. 被引量:1
  • 6Yang J N, Lei Y, Pan S, et al. System identification of linear structures based on Hilbert-Huang spectral analysis (Part 2): Complex modes [J]. Earthquake Engineering & structural Dynamics, 2003, 32(10): 1533 1554. 被引量:1
  • 7Yang A C, Fuh J L, Huang N E, et al. Temporal associations between weather and headache: analysis by empirical mode decomposition [J]. PloS one, 2011, 6(1): e14612. 被引量:1
  • 8Varadarajan N, Nagarajaiah S. Wind response control of building with variable stiffness tuned mass damper using empirical mode decomposition/Hilbert transform [J]. Journal of engineering mechanics, 2004, 130(4): 451 458. 被引量:1
  • 9Iluang N E, Shen Z, Long S R. A new view of nonlinear water waves: The Hilbert Spectrum [J]. Annual Review of Fluid Mechanics, 1999, 31(1): 417-457. 被引量:1
  • 10Del6chelle E, Lemoine J, Niang O. Empirical mode decomposition: an analytical approach for sifting process [J]. Signal Processing Letters, IEEE, 2005, 12(11): 764 767. 被引量:1

同被引文献23

  • 1Cohen L. Time-frequency distribution a review[J]. Proceedings of the IEEE, 1989, 77(7). 941--981. 被引量:1
  • 2Cassen T, Meeklenbrauker W. The aliasing problem in discrete-time Wigner distribution[J]. IEEE Trans- actions on Acoustics, Speech and Signal Processing, 1983, 31(5): 1067 1072. 被引量:1
  • 3Mallat S. A theory for multi-resolution decomposi tion, the wavelet representation[J]. IEEE Trans. PA M1, 1989, 11(7): 674--689. 被引量:1
  • 4Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non linear and non-stationary time series analysis[J]. Pro- ceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903--995. 被引量:1
  • 5Huang N E, Wu Z. A review on Hilbert Huang trans- form: Method and its applications to geophysical stud- ies[J]. Reviewso{ Geophysics, 2008, 47(2): 1--23. 被引量:1
  • 6Smith J S. The local mean decomposition and its appli- cation to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443 454. 被引量:1
  • 7Zheng Jin-de, Cheng Jumshengg, Yang Yu. A roiling bearing fault diagnosis approach based on LCD and {uzzy entropy[J]. Mechanism and Machine Theory, 2013, 70: 441--453. 被引量:1
  • 8Zheng Jin-de, Cheng Jun-sheng, Yang Yu. General- ized empirical mode decomposition and its applications to rolling element hearing fault diagnosis[J]. Mechani- cal Systems and Signal Processing, 2013, 40 (1): 136--153. 被引量:1
  • 9曹冲锋,杨世锡,杨将新.一种抑制EMD端点效应新方法及其在信号特征提取中的应用[J].振动工程学报,2008,21(6):588-593. 被引量:33
  • 10杨宇,杨丽湘,程军圣.基于LMD和AR模型的转子系统故障诊断方法[J].湖南大学学报(自然科学版),2010,37(9):24-28. 被引量:12

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部