期刊文献+

还原型谷胱甘肽发酵及分离纯化条件的优化 被引量:3

Optimization Conditions of Fermentation and Separation and Purification of Reduced-Glutathione
下载PDF
导出
摘要 旨在通过优化还原型谷胱甘肽的发酵及分离纯化条件,为GSH大规模的工厂化生产提供理论基础。首先通过筛选获得一株GSH高产菌酿酒酵母Y18,其胞内GSH含量为9.05 mg/g干菌体。进一步研究表明,在培养基中添加L-半胱氨酸和缬氨酸,以及发酵过程中补加葡萄糖可使GSH的总产量分别提高62.0%和146.1%。此外,对GSH在水溶液中稳定性的研究发现偏酸性环境(pH4.5)和氮气保护可显著降低GSH的损失率。最终通过对大孔树脂D001×7和Sephadex G-10的分离纯化条件的优化,获得纯度为98.1%的GSH,收率为73.2%。 The aim of the study is to provide theoretical basis in GSH large-scale production, by optimizing the conditions of its fermentation and purification. Firstly, a GSH high-yield Saccharomyces cerevisiae Y18 was obtained, with the production of 9.05 mg GSH per gram dry cells. Secondly, our results indicated that adding L-cysteine and Valine to the medium, or additional glucose during fermentation process could increase GSH production by 62.0% and 146.1%, respectively. Moreover, the weak acidity condition ( pH4.5 ) and nitrogen input protected GSH from oxidation, and improved its stability. Finally, we obtained high-purity ( 98.1% ) GSH and a promising recovery ( 73.2% ) after optimizing the conditions for separation and purification GSH in Macroporous resin D001 x 7 and Sephadex G-10 gel chromatography.
出处 《生物技术通报》 CAS CSCD 北大核心 2013年第11期180-185,共6页 Biotechnology Bulletin
关键词 酿酒酵母 还原型谷胱甘肽 发酵 分离纯化 Saccharomyces cerevisiae Reduced glutathione Fermentation Separation and purification
  • 相关文献

参考文献13

  • 1Yin L, Han X, Yu Y, et al. Antioxidant effect of selenium-containing dlutathione S- Transferase in rat cardiomyocytes[J] . Chemical Research in Chinese Universities, 1999, 13 ( 10) : 454-458. 被引量:1
  • 2Pauwels F, Vergauwen B, Vanrobaeys F, et al. Purification and characterization of a chimeric enzyme from Haemophilus influenzae Rd that exhibits glutathione-dependent peroxidase activity[J] Journal of Biological Chemistry, 2003, 278 ( 19 ) : 16658-16666. 被引量:1
  • 3Saxena A, Saxena A. Bioaccumulation and glutathione-mediated detoxification of copper and cadmium in Sphagnum squarrosum Crome Samml.[J] . Environmental Monitoring and Assessment, 2012, 184 (7) : 4097-4103. 被引量:1
  • 4Zhou L, RuiJA, Zhou RL, et al. Liver injury after intermittent or continuous hepatic pedicle clamping and its protection by reduced glutathione[J] . Hepatobiliary & Pancreatic Diseases International, 2004,3 (2): 9-13. 被引量:1
  • 5秦久福,李崎,顾国贤.谷胱甘肽在啤酒抗老化中的作用[J].食品工业科技,2010,31(6):361-364. 被引量:4
  • 6钟春梅,李正良,陈泽芳.还原型谷胱甘肽的临床应用[J].临床医药实践,2010,19(5):325-329. 被引量:12
  • 7Kiriyama K, Hara KY, Kondo A. Extracellular glutathione fermenta?tion using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter[J] . Applied Microbiology and Biotechnology, 2012,4 (96): 1021-1027. 被引量:1
  • 8李寅,陈坚,周楠迪,伦世仪.氨基酸和酵母膏对谷胱甘肽发酵的影响[J].中国医药工业杂志,1998,29(12):537-542. 被引量:22
  • 9Aragon AD, Torrez-Martinez N, EdwardsJS. Genomic analysis of Saccharomyces cerevisiae isolates that grow optimally with glucose as the sole carbon source[J] . Eiectrophoresis, 2012, 23 (33) : 3514-3520. 被引量:1
  • 10王爽,张惠文,叶淑红,徐明恺.还原型谷胱甘肽高产菌株的初筛及其提取工艺优化[J].生物技术,2011,21(3):76-82. 被引量:3

二级参考文献64

共引文献50

同被引文献159

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部