期刊文献+

基于群体行为的自适应变异算子鱼群算法 被引量:3

The Self-Adaptive Mutation Artificial Fish-School Algorithm Based on Group Behaviors
下载PDF
导出
摘要 针对人工鱼群算法的不足,考虑了包括鱼群个体之间的相互感知作用、群体的领导模式并结合萤火虫群中个体的光强吸引度在内的群体行为特点来对鱼群行为进行完善。同时,在算法改进方面,采用了自适应步长和视野,并且引入了Gauss变异算子和遗传算法在一定情况下对鱼群个体进行变异操作。在此基础上,提出了一种新型自适应变异算子的鱼群算法。通过典型函数验证结果表明该算法在收敛速度、精度、稳定性及克服早熟能力方面都有了显著的提高。 According to the disadvantages of the Artificial Fish-school Algorithm, the fish-school behav- iors are consummated by considering the group behaviors of neighborhood sensing factors, leader mode and the attraction of the individuals in the glowworm swarm. Meanwhile, it makes an improvement in combining the self-adaptive step and visual, Gaussian mutation and Genetic Algorithm together. Based on these improvements mentioned before, a new Artificial Fish-school Algorithm based on self-adaptive mu- tation operation is raised. By using typical functions to examine, the simulation results show that the con- vergence speed, optimization precision, algorithm stability and the ability to avoid precocious phenome- non of the improved algorithm are much better than the standard one.
出处 《中国电子科学研究院学报》 2013年第5期491-495,共5页 Journal of China Academy of Electronics and Information Technology
基金 国家自然科学基金资助(61032001)
关键词 鱼群算法 自适应 感知作用 领导模式 变异操作 Artificial Fish-school Algorithm self-adaptive neighborhood sensing factors leader mode mutation operation
  • 相关文献

参考文献18

二级参考文献36

共引文献934

同被引文献38

  • 1张仲海,王多,王太勇,林锦州,蒋永翔.采用粒子群算法的自适应变步长随机共振研究[J].振动与冲击,2013,32(19):125-130. 被引量:22
  • 2范玉军,王冬冬,孙明明.改进的人工鱼群算法[J].重庆师范大学学报(自然科学版),2007,24(3):23-26. 被引量:43
  • 3李晓磊,钱积新.人工鱼群算法:自下而上的寻优模式[c]//过程系统工程年会论文集.2001:76-82. 被引量:2
  • 4Xiao J M,Zheng X M,Wang X H,et al.A Mdified Artificial Fish-Swam Algorithm[C]∥Proceedings of the 6th World Congress on Intelligent Control and Automation.Dalian,2006:3456-3460. 被引量:1
  • 5Si He,Nabil Belacel,Habib Hamam,et al.Fuzzy Clustering with Improved Artificial Fish Swarm Algorithm[C]∥International Joint Conference on Computational Sciences and Optimization 2009.Hainan,2009(2):317-321. 被引量:1
  • 6Manber U.Introduction to Algorithms:A Creative Approach[M].Milano,Italy:Addison-Wesley,1989. 被引量:1
  • 7Krishnanand K N,Ghose D.Glowworm swarm optimisation:a new method for Optimising motilmodal functions[J].International Journal of Computational Intelligence Studies,2009,1(1):93-119. 被引量:1
  • 8Jiang Jing-qing,Bo Yu-ling,Song Chu-yi,et al.Hybrid Algorithm Based on Particle Swarm Optimization and Artificial Fish Swarm Algorithm[J].Lecture Notes in Computer Science,2012,7:607-614. 被引量:1
  • 9T.Back,F.Hoffmeister, and H.Schwefel.A survey of evolution strategies [J].Proceedings of the Fourth International Conference on Genetic Algorithms,132-139, san Diego,Academic Press,1991. 被引量:1
  • 10H.Beye and H.Schwefel.A comperhensive introdution : Evolution strategies[J]. Natural Computing,2002,1 (1). 被引量:1

引证文献3

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部