期刊文献+

物体垂直出入水的非定常空泡数学模型 被引量:6

Model of the Unsteady Vertical Water-Entry and Water-Exit Cavities
下载PDF
导出
摘要 研究了物体从水下向水面高速运动产生的非定常垂直空泡,建立了出水垂直空泡的数学模型,得到了匀速、空泡压力不变条件下的空泡外形、长度、体积随水深变化的解析解,给出了出水通气空泡发展为超空泡的条件.利用类似的方法建立了水平空泡和入水空泡的数学模型,并对3种空泡进行了比较研究.比较研究的结论是,随物体距水面的水深减小,出水空泡体积自身有增大趋势,空泡不容易发生泄气现象.且要保持出水空泡压力不变,空泡内的气体含量就应该增加(可通过人工通气方式).入水空泡正好相反,随物体入水深度增加,空泡体积自身有收缩的趋势,并挤压空泡内的气体从环境压力较低的空泡尾部喷射而出,导致空泡内的气体含量减少,空泡压力降低.但是当空泡压力低于环境压力后,空泡尾部又将被环境高压所封闭,气体喷射不出来.随着入水深度继续增加,空泡尾部将重复上述过程,形成周期性的喷射-封闭-喷射-封闭的脉动过程,这个脉动喷射过程将在空泡尾部的流体中形成一连串小气泡,并由于空泡内的压力波动而导致空泡形状发生波动现象. The unsteady vertical water-entry and water-exit cavities produced by a high-speed body were investigated theoretically, the mathematical models of the water-entry and water-exit cavities were proposed, and the solutions of the cavity shape varying with water depth were de- rived. Based on the solutions, the cavity length, cavity volume, closure depth of water-entry cavity and the condition for the formation of supercavity were obtained. The results show that the volume of the water-exit cavity increases with the reduction in water depth. Therefore, in order to maintain ( or increase) the pressure of the water-exit cavity, more volume of gas injec- tion is required in contrast to horizontal cavity, which also means that it is harder for the water- exit cavity to form supercavity, but simultaneously the advantage is that the water-exit cavity is hard to leak gas due to the increase in its volume. On the contrary, with the increase in water depth, the water-entry cavity has the tendency to shrink its volume, and squeeze gas within the cavity to jet out from the rear end of the cavity, with the gas reduction within cavity due to the gas jet, the pressure of the cavity will decrease, if the pressure falls below the environmental pressure, the rear end of the cavity ~ll be closed by the environmental high-pressure, and thus the gas jet will terminate. As a result, a periodic impulsive process that consists of successive jetting-closure phases will be formed at the rear end of the cavity, resulting in the formation of a series of small bubbles in the wake of the cavity and wavelike fluctuations on the surface of the cavity due to the fluctuations of the pressure within the cavity.
出处 《应用数学和力学》 CSCD 北大核心 2013年第11期1130-1140,共11页 Applied Mathematics and Mechanics
基金 水动力学重点实验室基金资助项目(9140C220204110C2203) 中国国家留学基金资助项目(2009832228)
关键词 空泡 出水 入水 cavity water-exit water-entry
  • 相关文献

参考文献12

  • 1Michel J M. Introduction to cavitation and supercavitation[ R]. RTO AVT Lecture. Brussels, 2001. 被引量:1
  • 2Semenenko V N. Artificial supercavitation, physices and calculation [ R ]. RTO AVT Lecture. Brussels, 2001. 被引量:1
  • 3Savchenko Y N, Semenenko V N, Putilin S L. Unsteady supercavitated motion of bodies[J]. International Journal of Fluid Mechanics Research, 2000, 37(1) : 109-137. 被引量:1
  • 4Savchenko Y N, Semenenko V N. The gas absorption into supercavity from liquid-gas bubble mixture[ C]//Proc Third Internal Symposium on Cavitation. Vol 2. Grenoble, France, 1998: 49-53. 被引量:1
  • 5Logvinovical G V. Hydrodynamics of Flows With Free Boundaries[M]. Halsted Press, 1973. 被引量:1
  • 6Vasin A D. The principle of independence of the cavity sections expansion (Logvinovich' s principle) as the basis for investigation on cavitation flows[R]. RTO AVT Lecture. Brussels, 2001. 被引量:1
  • 7Savchenko Y N, Semenenko V N. Wave formation on the boundaries of cavities forming at wa- ter entry of a disk and cones[ C ]//Problems of High-Speed Tguid Mechanics. Cheboksary: Chyvashi University Press, 1993 : 231-239. 被引量:1
  • 8Semenenko V N. Dynamic processes of supercavitation and computer simulation [ R ]. RTO AVT Lecture. Brussels, 2001. 被引量:1
  • 9Bergmann R, Van der Meer D, Gekle S, Van der Bos A, Lohse D. Controlled impact of a disk on a water surface: cavity dynamics[J]. J b2uid Mech, 2009, 633- 381-409. 被引量:1
  • 10鲁传敬,李杰.水下航行体出水空泡溃灭过程及其特性研究[C]//第十一届全国水动力学学术会议暨第二十四届全国水动力学研讨会并周培源教授诞辰110周年纪念大会文集.北京:海洋出版社,2012:54-67. 被引量:2

二级参考文献29

  • 1罗金玲,毛鸿羽.导弹出水过程中气/水动力学的研究[J].战术导弹技术,2004(4). 被引量:17
  • 2傅慧萍,鲁传敬,吴磊.回转体空泡流特性研究[J].水动力学研究与进展(A辑),2005,20(1):84-89. 被引量:29
  • 3Besant W, Ramsey A. A Treatise on Hydrodynamics. Part II: Hydromechanics. G Bell and Sons, London, 1913. 30-39. 被引量:1
  • 4Blake J, Gibson D. Cavitation bubbles near boundaries. Annual Review of Fluid Mechanics, 1987, 19(1): 99-123. 被引量:1
  • 5Saito Y, Sato K. Cavitation bubble collapse and impact in the wake of a circular cylinder. In: Proceeding of the Fifth International Symposium on Cavitation (CAV2003), Osaka. Janan. 2003. 1-6. 被引量:1
  • 6Toumi I, Kumbaro A, Paillere H. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow. In: Proceedings of the 30th Computational Fluid Dynam- ics, yon Karman Inst. Lecture Ser. 1999, 3. 被引量:1
  • 7Coutier-Delgosha O, Stutz B, Vabre A, et al. Analysis of cavitating flow structure by experimental and numerical investigations. J Fluid Mech, 2007, 578:171-222. 被引量:1
  • 8Merkle CL, Feng J, Buelow PEO. Computational model- ing of the dynamics of sheet cavitation . In: Proc 3rd International Symposium on Cavitation, Grenoble, France. 1998. 被引量:1
  • 9Kunz RF, Boger DA, Stinebring DR. A preconditioned navier-stokes method for two-phase flows with application to cavitation. Comput Fluids, 1998, 29(8): 849-875. 被引量:1
  • 10Singhal AK, Athavale MM, Li HY, et al. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 2002(3), 124:617-624. 被引量:1

共引文献55

同被引文献99

引证文献6

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部