摘要
研究化学中一类时滞自催化反应扩散方程在Neumann边值条件下的稳定性和Hopf分支,得到了稳定性和Hopf分支出现的条件,并利用中心流形和规范型理论讨论其分支周期解的分支方向和稳定性及分支周期的交化律.
In this paper, we study the stability and Hopf bifurcation of autocatalytic reaction diffusion equations with time delay in the Neumann boundary value conditions in chemistry. We obtain the conditions when the stability and the Hopf bifurcation can occur. Meanwhile, we make the use of the theory of center manifold and type specification to discuss the branching direction, stability of periodic solutions of a branch and the branch cycle of change rule.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第21期238-245,共8页
Mathematics in Practice and Theory
关键词
时滞
反应扩散
周期解
HOPF分支
自催化
稳定性
time delay
reaction diffusion
periodic solutions
Hopf bifurcation
catalytic stability