摘要
研究混流装配线调度问题,提出了一种用于求解该问题的新颖蚁群算法;该算法定义了适合求解该问题的信息素表示方法和更新公式,并结合解的质量定义了兴趣度;结合每代所产生的最优解构建知识库,并给出每个具体分配方案所占的次数比重;结合兴趣度和比重定义了经验概率因子;通过对具体实例进行求解,说明了算法的可行性;同时,针对同一实例,结果发现:如果迭代次数相同,则该算法求得的目标函数值小于Ant求得的目标函数值,且该算法求得的结果优于其他算法;可见,该算法解决问题的性能较优。
The mixed model assembly lines scheduling problems are researched, and a novel ant colony algorithm is proposed. The algo rithm defines the representing method and updating formula for pheromone and at the same time defines interestingness combined with the quality of the solution. Then the algorithm establishes the knowledge base combined with the optimal solution generated in each generation and defines the proportion for each specific allocation. Last the algorithm designs empirical probability factor combined with the proposed in terestingness and proportion. The feasibility of the algorithm is illustrated by solving the case. For the same iteration, results show that the objective function value obtained by the novel ant colony algorithm is smaller than Ant on the same case. Also, the novel ant colony algorithm is better than other algorithms. As a result, the novel ant colony algorithm has a better performance.
出处
《计算机测量与控制》
北大核心
2013年第10期2762-2763,2776,共3页
Computer Measurement &Control
基金
国家自然科学基金青年科学基金项目(81101490)
国家自然科学基金重点项目(60433020)
关键词
混流装配线调度问题
蚁群算法
信息素
兴趣度
经验概率因子
mixed model assembly lines scheduling problems
ant colony algorithm
pheromone
interestingness
empirical probabilityfactor