期刊文献+

考虑基准资产的动态投资组合选取 被引量:1

A Dynamic Model of Portfolio Choice with Benchmark Orientation
下载PDF
导出
摘要 职业基金经理的目标经常是希望自己的投资组合以稳定的表现能够超越所某一基准资产或组合。因此本文给出一个考虑基准资产的动态均值——方差投资组合选取模型。假设状态之间的转移遵循马氏过程,给定状态转移矩阵,可以得到对风险资产最优投入的解析表达式。此表达式表明对风险资产的投入由三项构成,前两项是不考虑基准资产时对风险资产的投入,最后一项与基准资产有关;在基准资产上的权重由基准资产收益的大小来决定,与积极投资组合管理者的风险厌恶程度无关;随着风险厌恶程度的增加,管理者会减少在风险资产上的投入。数值分析显示考虑基准资产的投资组合是一个积极的投资组合。 Professional fund managers' goals are often hope that their portfolios to stable performance can go beyond a certain benchmark asset or portfolio.So in this paper,we give a dynamic mean-variance considering benchmark asset portfolio selection model.Assumes that the state transfer between follow markov process,a given state transition matrix,can get analytic expressions of the optimal risk assets.This expression shows that investment in risky assets is composed of three,the first two benchmark is not consider assets for risky assets into,when the last item related to benchmark asset.On the baseline assets are weighted by benchmark yields to decide the size of the assets,has nothing to do with the degree of risk aversion of the active portfolio managers.With the increase of degree of risk aversion,risk managers will reduce the asset to hurt.Portfolios of numerical analysis shows that considering the benchmark portfolio is a positive.
作者 郭文英
出处 《技术经济与管理研究》 2013年第11期62-68,共7页 Journal of Technical Economics & Management
基金 国家自然科学基金资助项目(11071268) 国家级重点学科培养资助项目(00591262122501)
关键词 投资组合 基准资产 风险投资 金融市场 Portfolio choice Benchmark Venture capital The financial markets
  • 相关文献

参考文献15

  • 1Buraschi, A., AJiltsov. Model Uncertainty and Option Marketswith Heterogeneous Agents [J].Joumal of Finance, 2006(61). 被引量:1
  • 2David Weinbaum. Preference heterogeneity and asset prices :An exact solution [J]Joumal of Banking & Finance, 2010(34):2238-2246. 被引量:1
  • 3G.Yin, X.Y.Zhou. Markowitz's mean-variance portfolio selec-tion with regime switching:From discrete-time models to theircontinuous-time limits [Jj.IEEE Transactions on AutomaticControl,2004(49) : 349-360. 被引量:1
  • 4Grinold, R.C., Kahn, R.N.. Active Portfolio Management [R]JIWINInc,2000. 被引量:1
  • 5Huiling Wu, Zhongfei Li. Multi-period mean-variance portf-olio selection with regime switching and a stochastic cash flow[J].Insurance : Mathematics and Economics,2012(50) : 371-384. 被引量:1
  • 6J .Wei, K.C.Wong, S.CP.Yam, SP.Yung. Markowitz's mean-varianceasset-liability management with regime switching: A time-co-nsistent approach [Jj.Insurance : Mathematics and Economics,2013(53):281-291. 被引量:1
  • 7Kogan, L, LMakarov, R.Uppal. The equity risk premium and therisk free rate in an economy with borrowing constraints [J].Ma~thematics and Financial Economics,2007(1): 1-19. 被引量:1
  • 8O.LV.Costa and M.V.Araujo. A generalized multi-period mean-variance portfolio optimization with Markov switching param-eters [JJ.Automatica,2008(44) : 2487-2497. 被引量:1
  • 9Matthijs Lo? Heterogeneity in stock prices:A STAR model withmultivariate transition function [J]Joumal of Economic Dyna-mics & Control,2012(36): 1845-1854. 被引量:1
  • 10Tomas Bj ? rk, Agatha Murgoci, Xun Yu Zhou. Mean-varianceportfolio optimization with state-dependent risk aversion [J].Mathematical Finance 2012,2011,00515.x. 被引量:1

二级参考文献44

  • 1刘小茂,李楚霖,王建华.风险资产组合的均值—CVaR有效前沿(Ⅱ)[J].管理工程学报,2005,19(1):1-5. 被引量:31
  • 2孙万贵.不完全市场中动态资产分配[J].应用数学学报,2006,29(1):166-174. 被引量:5
  • 3曹静,秦超英,覃森.均值-CVaR模型下的两基金分离定理[J].系统工程学报,2006,21(2):201-205. 被引量:8
  • 4Steinbach M C.Markowitz revisited:mean-variance models in financial portfolio analysis[J].SIAM Review,2001,43(1):31-85. 被引量:1
  • 5Jarrow R,Zhao F.Downside loss aversion and portfolio management[J].Management Science,2006,52(4):558-566. 被引量:1
  • 6Alexander G J,Baptista A M.A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model[J].Management Science,2004,50(9):1261-1273. 被引量:1
  • 7Rockafellar R T,Uryasev S.Conditional value-at-risk for general loss distributions[J].Journal of Banking & Finance,2002,26(7):1443-1471. 被引量:1
  • 8Rockafellar R T,Uryasev S.Optimization of conditional value-at-risk[J].Journal of Risk,2000,2(3):21-41. 被引量:1
  • 9Karatzas I, Lehoczky J P, Shreve S E, et al. Martingale and duality for utility maximization in an incomplete market[J]. SIAM J Contr Optim, 1991, 29(3): 702- 730. 被引量:1
  • 10Zhang A H. A secret to create a complete market from an incomplete market[J]. Applied Mathematics and Computation, 2007, 191(1): 253 -262. 被引量:1

共引文献18

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部