期刊文献+

月球MariusHills盾形火山密度和岩石圈弹性厚度 被引量:4

Density and lithospheric thickness of the Marius Hills shield volcano on the Moon
原文传递
导出
摘要 Marius Hills火山高原位于月球正面风暴洋区域,具有丰富的火山建造遗迹,包括火山穹窿,火山锥和月溪等.该区域保留了月海火山作用的典型特征,为研究月海热演化历史提供了有利的窗口.受以往观测数据类型的限制,大多数研究都是针对该区域的表面形貌和物质成分特性的分析,缺乏对月海火山次表层和内部结构等重要火山特征的研究.本文利用月球正面高分辨率地形和重力数据,结合附加表面和内部载荷的弹性薄壳均衡模型,对该火山区域的平均月壳密度,岩石圈弹性厚度和表面内部载荷比等参数进行定量约束.结果显示该区域月壳密度较高,为3040 kg m 3,具有典型的月海玄武质的密度特征;地下可能存在侵位较浅的岩浆房或岩床状侵入体或是岩浆充填了壳层松散的区域;该区域的岩石圈弹性厚度较小,约为4 km,反映该区域在形成过程中富集了大量的热,该结果与通过光谱矿物分析得到的风暴洋区域富集产热元素(如钍)的结果一致. Marius Hills is a large volcanic complex on the Oceans Procellarum of the lunar nearside. Numerous volcanic features, including domes, cones, and rilles occur in this region. Due to limitations in lunar remote sensing data, most previous studies on this region focused on its morphological and geochemical properties but little was known about the subsurface and interior structures of this volcanic complex. Knowledge of the local crustal density is meaningful to both determine the composition for this volcanic complex and understand the crustal evolutionary history for this region. Constraining the lithospheric thickness in this region is helpful to estimate the heat flux at the time of volcanic loading, which is a crucial parameter to study the thermal evolutionary history of the nearside mantle. Here, we applied a localized gravity and topography admittance analysis for the Marius Hills region to constraint its crustal density and lithospheric thickness. The gravity filed is modeled using a thin elastic lithspheric model that considers both surface and subsurface loads. Localized admittance and correlations spectra are used to constrain these modeled parameters. The best-fit crustal density in our model is -3040 kg m 3, which is much higher than the average lunar crustal density as 2550 kg m-3, indicating that magma chambers or sills has intruded to the shallow crust and/or that intrusive magma has filled up the porous subsurface crust. The total volume of basalts emplaced in the Marius Hills region is ~2.9~104 km3, suggesting that Marius Hills is a major volcanic center in the Oceanus Procellarum. The best-fit lithospheric thickness of this region is constrained to be as small as -4 km, indicating that a significant amount of heat production elements have concentrated in this region during the formation of the volcanic complex. This result is consistent with the previous spectral studies that heat production elements (such as thorium) are more abundant in the Oceanus Procellarum.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第11期1395-1402,共8页 Scientia Sinica Physica,Mechanica & Astronomica
基金 中国博士后科学基金(编号:2012M520070) 中央高校新青年教师科研启动基金(编号:CUG120810) 嫦娥专项基金(编号:CUG130106)资助
关键词 月球 盾形火山 Marius Hills 密度 岩石圈弹性厚度 moon, shield volcano, Marius hills, density, lithospheric thickness
  • 相关文献

参考文献30

二级参考文献43

  • 1马昌前.月球花岗岩——比较行星学意义[J].地质科技情报,2004,23(4):19-24. 被引量:1
  • 2Neumann G A, Zuber M T, Smith D E, et al. The lunar crust: Global structure and signature of major basins. J Geophys Res, 1996, 101: 16841-16843. 被引量:1
  • 3Wieczorek M A, Phillips R J. Potential anomalies on a sphere: Applications to the thickness of the lunar crust. J Geophys Research-Planet, 1998, 103 : 1715-1724. 被引量:1
  • 4Potts L V, von Frese R B. Crustal attributes of lunar basins from terrain-correlated free-air gravity anomalies. J Geophys Res, 2003, 108(E5): 5037. 被引量:1
  • 5Kaula W M, Schubert G, Lingenfelter R E, et al. Apollo laser altimetry and inferences as to lunar structure. Proc Lunar Sci Conf 5th, 1974, 3049-3058. 被引量:1
  • 6Bills B G, Ferrari A J. A harmonic analysis of lunar topography. Icarus, 1977, 31:244-259. 被引量:1
  • 7Zuber M T, Smith D E, Lemoine F G, et al. The shape and internal structure of the moon from the clementine mission. Science, 1994, 266:1839-1843. 被引量:1
  • 8Smith D E, Zuber M T, Neumann G A, et al. Topography of the moon from the Clementine lidar. J Geophys Res, 1997, 102: 1591- 1611. 被引量:1
  • 9Arald H, Tazawa S, Noda H, et al. Lunar global shape and polar topography derived from kaguya-LALT Laser Altimetry. Science, 2009, 323:897-900. 被引量:1
  • 10jolliff B J, Gillis J J, Haskin R L, et al. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J Geophys Res, 2000, 105:4197-4216. 被引量:1

共引文献15

同被引文献59

  • 1OUYANG ZiYuan1,2, LI ChunLai1, ZOU YongLiao1, ZHANG HongBo1, Lü Chang1, LIU JianZhong1, LIU JianJun1, ZUO Wei1, SU Yan1, WEN WeiBin1, BIAN Wei1, ZHAO BaoChang3, WANG JianYu4, YANG JianFeng3, CHANG Jin5, WANG HuanYu6, ZHANG XiaoHui7, WANG ShiJin7, WANG Min1, REN Xin1, MU LingLi1, KONG DeQing1, WANG XiaoQian1, WANG Fang1, GENG Liang1, ZHANG ZhouBin1, ZHENG Lei1, ZHU XinYing1, ZHENG YongChun1, LI JunDuo1, ZOU XiaoDuan1, XU Chun1, SHI ShuoBiao1, GAO YiFei1 & GAO GuanNan1 1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China,2 Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China,3 Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China,4 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China,5 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China,6 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China,7 Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China.Primary scientific results of Chang'E-1 lunar mission[J].Science China Earth Sciences,2010,53(11):1565-1581. 被引量:14
  • 2欧阳自远.太阳系探测的进展与比较行星学的主要科学问题[J].地学前缘,2006,13(3):8-18. 被引量:9
  • 3Tesauro M, Kaban M K, Cloetingh S A P L. Global model for the lithospheric strength and effective elastic thickness. Tectonophys, 2013, 602:78-86. 被引量:1
  • 4Turcotte D L. Role of membrane stresses in the support of planetary topography. J Geophys Res, 1981, 86(B5): 3951-3959. 被引量:1
  • 5Simons M, Solomon S C, Hager B H, et al. Localization of gravity and topography: Constrains on the tectonics and mantle dynamics of Venus. J Geophysics Res, 1997, 131(10): 24-44. 被引量:1
  • 6Audet P. Toward mapping the effective elastic thickness of planetary lithospheres from a spherical wavelet analysis of gravity and topography. Phys Earth Planet Inter, 2014, 226:48-82. 被引量:1
  • 7Zhong Z, Li F, Yah J, et al. Lunar geophysical parameters inversion based on gravity/topography admittance and particle swarm optimization. Adv Space Res, 2014, 4(54): 770-779. 被引量:1
  • 8Crosby A, McKenzie D. Measurements of the elastic thickness under ancient lunar terrain. ICARUS, 2005, 173(1): 100-107. 被引量:1
  • 9Audet P. Toward mapping the effective elastic thickness of planetary lithospheres from a spherical wavelet analysis of gravity and topography. Phys Earth Planet In, 2014, 226:48-82. 被引量:1
  • 10Matsumoto K S, Goossens Y, Ishihara Q, et al. An improved lunar gravity field model from SELENE and historical tracking data: Revealing the farside gravity features. J Geophys Res, 2010, 115(E06007): 1-22. 被引量:1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部