期刊文献+

基于迭代方法的多层Markov网络信息检索模型 被引量:10

A Multi-layer Markov Network Information Retrieval Model Based on Iteration
下载PDF
导出
摘要 查询扩展是提高检索效果的有效方法,传统的查询扩展方法大都以单个查询词的相关性来扩展查询词,没有充分考虑词项之间、文档之间以及查询之间的相关性,使得扩展效果不佳。针对此问题,该文首先通过分别构造词项子空间和文档子空间的Markov网络,用于提取出最大词团和最大文档团,然后根据词团与文档团的映射关系将词团分为文档依赖和非文档依赖词团,并构建基于文档团依赖的Markov网络检索模型做初次检索,从返回的检索结果集合中构造出查询子空间的Markov网络,用于提取出最大查询团,最后,采用迭代的方法计算文档与查询的相关概率,并构建出最终的基于迭代方法的多层Markov网络信息检索模型。实验结果表明:该文的模型能较好地提高检索效果。 Query expansion is an effective way to improve the retrieval effectiveness,traditional query expansion methods mostly extend the query words only considered the relevance of a single query word,without fully considering the relevance between terms,documents,as well as between queries,so this makes the expansion effect poorly.To solve this problem,first,we construct the Markov network of terms’ and documents’ subspace for extracting the maximum term cliques and document cliques,then,we divide the maximum word cliques into documents dependent word cliques and non-documents dependent word cliques through the mapping relation between term and document cliques,and build the Markov network retrieval model based on document cliques dependency to do the initial search,then we construct the Markov network of queries’ subspace from the search results,which are used for extracting the maximum query cliques,finally,we calculate the probability between document and query in an iterative method,and build the final multi-layer Markov network information retrieval model based on iteration.Experimental results show that our model can improve the retrieval results.
出处 《中文信息学报》 CSCD 北大核心 2013年第5期122-128,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(61272212 61163006 61203313)
关键词 MARKOV网络 查询扩展 文档依赖 信息检索 Markov network query expansion document reliance clique information retrieval
  • 相关文献

参考文献14

  • 1黄萱菁,张奇,邱锡鹏.现代信息检索[M].第一版.机械工业出版社,2012. 被引量:1
  • 2Zhai C,Lafferty J.Model-based feedback in the language modeling approach to information retrieval[C]//Proceedings of the tenth international conference on Information and knowledge management.ACM,2001:403-410. 被引量:1
  • 3Tao T,Zhai C X.A mixture clustering model for pseudo feedback in information retrieval[M]//Classification,Clustering,and Data Mining Applications.Springer Berlin Heidelberg,2004:541-551. 被引量:1
  • 4Soskin N,Kurland O,Domshlak C.Navigating in the dark:Modeling uncertainty in ad hoc retrieval using multiple relevance models[M]//Advances in Information Retrieval Theory.Springer Berlin Heidelberg,2009:79-91. 被引量:1
  • 5Tao T,Zhai C X.Regularized estimation of mixture models for robust pseudo-relevance feedback[C]//Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval.ACM,2006:162-169. 被引量:1
  • 6Lv Y,Zhai C X,Chen W.A boosting approach to improving pseudo-relevance feedback[C]//Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval.ACM,2011:165-174. 被引量:1
  • 7Lee K S,Croft W B,Allan J.A cluster-based resampling method for pseudo-relevance feedback[C]//Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval.ACM,2008:235-242. 被引量:1
  • 8甘丽新..基于Markov概念的信息检索模型[D].江西师范大学,2007:
  • 9付剑波,王明文,罗远胜,张华伟.基于团模型的文档重排算法研究[J].中文信息学报,2009,23(1):71-78. 被引量:2
  • 10汤皖宁..基于文档团的Markov网络检索模型[D].江西师范大学,2013:

二级参考文献24

  • 1丁国栋,白硕,王斌.一种基于局部共现的查询扩展方法[J].中文信息学报,2006,20(3):84-91. 被引量:43
  • 2Fox, E. A., Nunn, G. L.,&Lee, W. C. Coefficients for Combining Classes in a Collection[C]//Proceedings of the llth Annual International ACM Conference on Research and Development in Information Retrieval: 291-307. 被引量:1
  • 3Qiu Y, Frei H. Concept based query expansion[C]// Korfhage R, Rasmussen EM,Willett P, eds Proceed ings of the 16th Annual International ACM SIGIR Conference on Research and Development in Informa tion Retrieval. New York..ACM Press, 1993:160-169. 被引量:1
  • 4S. Deerwester, S. T. Dumais, T. K. Landauer. Indexing by Latent Semantic Analysis[C] Journal of the Society for Information Science,1990, 41(6): 391-407. 被引量:1
  • 5Tingting HE, Xinhui TU, Guozhong QU, Donghong II. Chinese Query Expansion Based on Related Term Group[C]//IEEE International Conference on Natural Language Processing and Knowledge Engineering. 2005: 483-487. 被引量:1
  • 6Anick, P. G., Vaithyanathan. Exploiting Clustering and Phrases for Context-based Information Retrieval [C]//Proceedings of 20th ACM SIGIR International Conference on Research and Development in Information Retrieval: 314-323. 被引量:1
  • 7Lingpeng Yang, Donghong Ji , Munkew Leong. Document Reranking by Term Distribution and Maximal Marginal Relevance for Chinese Information Retrieval [J].Information Processing and Management: 2002, 43:315- 326. 被引量:1
  • 8de Campos L M, Ferna' ndez-Luna J M, Huete J F. Implementing Relevance Feedback in the Bayesian Network Retrieval Model [J].Journal of the American Society for Information Science and Technology: 2003, 54 (4) : 302- 313. 被引量:1
  • 9Silva I, Ribeiro-Neto B, Calado P, et al. Link-based and Content-based Evidential Information in A Belief Network Model[C]//Proeeedings of the 23rd International ACMSIGIR Conference on Research and Development in Information Retrieval. Athens, 2000: 96-103. 被引量:1
  • 10J Pearl. Probabilistic Reasoning inIntelligent Systems: Network of Plausible Inference. San Francisco, CA: Morgan Kaufmann,1988 被引量:1

共引文献20

同被引文献89

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部