摘要
探讨通过利用畜禽废水中氨氮实现矿化垃圾中铵氧化菌的富集,再利用其对CH4同等氧化能力实现垃圾填埋场温室气体总量减排。研究结果表明:矿化垃圾对畜禽污水中氨氮具备较强的硝化能力,运行120d内氨氮去除率高于60%;投加200mg·kg-1氨氮后的培养研究中,120h驯化后矿化垃圾硝酸盐氮的生成量分别为原生矿化垃圾样品和粘土样品的2.0倍和3.8倍;矿化垃圾和粘土样品中CH4消耗和CO2的净生成趋势可分别采用一级和零级动力学模型来表征(R2>0.68);与氮转化趋势类似,基于CO2的净生成速率,120d驯化后矿化垃圾的CH4氧化能力比粘土样和原生矿化垃圾分别提高了59.3%和10.6%。矿化垃圾经高氨氮畜禽养殖废水驯化可有望提高其对CH4的氧化能力,而污水中其他组分(CODCr、SS及磷素等)富集对CH4氧化过程的影响还亟待进一步研究。
Ammonia oxidizing bacteria was accumualted for landfill CH4 oxidation in the mineralized refuse throguh livestock wastewater NH4+- N incubation, which would minimize the total Greenhouse gas emission equivalent from MSW landfill. Mineralized refuse was firstly incubated by livestock wastewater NH4 + --N during the 120d operation. Mineralized refuse possessed the strong nitrification capacity with the removal rate of NH4+-N content over 60% during the 120 d operation. After 200 mg N kg 1was inputted, NOa -N content produced from the 120 d incubated mineralized refuse was 2.0-time and 3.8-time more than those of the original mineralized refuse and clay soil, respectively. CH4 decrease and the net produce of CO2 can be well fitted the one- and zero-order kinetics model during the 120 h incubation (R2= 0.68), respectively. Similar as nitrogen turnover, CH4 oxidation capacity from the 120 d incubated mineralized refuse was 10.6% and 59.3% more than those of the original mineralized refuse and clay soil, respectively. Therefore, the mineralized refuse can be upgraded for the CH4 oxidation throng NH4+- Ncontent incubation from the livestock wastewater and the influence on CH4 oxidation by other components (including CODcr, SS and phosphate) from wastewater should be further investigated.
出处
《土木建筑与环境工程》
CSCD
北大核心
2013年第5期62-66,共5页
Journal of Civil,Architectural & Environment Engineering
基金
国家自然科学基金(41005090)
江苏省自然科学基金(BK2010100)
2010年中央级公益性科研院所基本科研业务专项
关键词
甲烷氧化
硝化能力
矿化垃圾
驯化
变化趋势
CH4 oxidation
nitrification capacity
mineralized refuse
incubation
variations tendency