期刊文献+

组合标记的多视图半监督协同分类算法 被引量:3

Multi-view semi-supervised collaboration classification algorithm with combination of agreement and disagreement label rules
下载PDF
导出
摘要 为了提高多视图半监督协同算法的性能,并针对算法应用范围受限的问题,提出了一种组合标记规则的协同训练方法。该算法将一致性与非一致性标记规则相结合,若分类器具有相同标记则将对应样本加入到相应的样本集中;若标记不同且两分类器对应的标记置信度差值超过了一定的阈值,则采用高置信度分类器的标记结果,并将样本添加到相应的样本集中。通过判断两分类器对相应样本的标记是否一致以及差异性阈值对未标记样本进行组合标记,并利用分类器差异性判断原则更新分类模型,充分利用未标记样本中的有用信息将分类器性能提高5%以上。所提出的算法在桥梁结构健康监测数据集及标准UCI数据集上的实验结果验证了算法在多视图分类问题上的有效性和可行性。 To improve the performance of the co-training algorithm and expand the range of applications, a multi-view semi-supervised collaboration classification algorithm with the combination of consistent and inconsistent label rules was proposed, which aimed at providing a more effective method for the classification of the bridge structured health data. The proposed algorithm used combination of agreement and disagreement label rules for the unlabeled data by judging whether the two classifiers were consistent. Put the sample to the label set, if the label results were consistent. If the label results were inconsistent and the confidence was beyond the threshold, it put the label result of the high confidence to the label set, took full use of the unlabeled data to improve the performance of the classifier, and updated the classification model by the difference of the classifiers. The experimental results of the proposed algorithm on the bridge structured health datasets and standard UCI datasets verify the effectiveness and feasibility of the proposed model on the multi-view classification problems.
出处 《计算机应用》 CSCD 北大核心 2013年第11期3090-3093,共4页 journal of Computer Applications
基金 北京市自然科学基金资助项目(4132025)
关键词 多视图 半监督协同学习 组合标记 分类器差异 桥梁结构健康监测 multi-view semi-supervised co-training learning combined label classifier difference bridge structuredhealth monitoring
  • 相关文献

参考文献12

  • 1BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training [ C]// COLT' 98: Proceedings of the llth Annum Conference on Computational Learning Theory. New York: ACM Press, 1998:92 - 100. 被引量:1
  • 2HAHN S, LADNER R, OSTENDORF M. Agreement/disagreement classification: exploiting unlabeled data using contrast classifiers [ C]// Proceedings of the 2006 Human Language Technology Con- ference of the NAACL. Stroudsburg: Association for Computational Linguistics, 2006:53-56. 被引量:1
  • 3GUZ U, CUENDET S, HAKKANI-TUR D, et al. Multi-view semi- supervised learning for dialog act segmentation of speech [ J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(2) : 320 -329. 被引量:1
  • 4ZHOU Z H, LI M. Semi-supervised learning by disagreement [ J]. Knowledge and Information Systems, 2010, 24(3): 415 -439. 被引量:1
  • 5BOUSMALIS K, MORENCY L, PANTIC M. Modeling hidden dy- namics of muhimodal cues for spontaneous agreement and disagree- ment recognition [ C]// FG 2011 : Proceedings of the Ninth IEEE International Conference on Automatic Face and Gesture Recogni- tion. Piscataway: IEEE Press, 2011: 746-752. 被引量:1
  • 6ANDREAS J, ROSENTHAL S, McKEOWN K. Annotating agree- ment and disagreement in threaded discussion [ C]// LREC 2012: Proceedings of the 8th International Conference on Language Re- sources and Evaluation. Istanbul: European Language Resources Association, 2012:813 -816. 被引量:1
  • 7CHRISTOUDIAS C, URTASUN R, DARRELL T. Multi-view learn- ing in the presence of view disagreement [ EB/OL]. [2013-04-23]. http://uai, sis. pitt. edu/papers/08/p88-christoudias, pdf. 被引量:1
  • 8LI G, CHANG K, HOI S. Multi-view semi-supervised learning with consensus [ J]. IEEE Transactions on Knowledge and Data Engi- neering, 2012, 24(11): 2040-2051. 被引量:1
  • 9张哲,牟瑛娜,苗峰.桥梁结构基于性能的抗震设计方法的应用研究[C]//第二届结构工程新进展国际论坛论文集.北京:中国建筑工业出版社,2008:205-208. 被引量:1
  • 10宗周红,褚福鹏,牛杰.基于响应面模型修正的桥梁结构损伤识别方法[J].土木工程学报,2013,46(2):115-122. 被引量:41

二级参考文献13

共引文献43

同被引文献6

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部