期刊文献+

2D-PCA在基因特征提取中的应用

Application of 2D-PCA in Gene Feature Extraction
下载PDF
导出
摘要 目的研究一种高效的基因特征提取方法,以尽可能地克服传统噪声基因剔除法中阈值设置主观性带来的信息丢失问题。方法收集Golub等发布的急性白血病基因表达谱公共数据库中的数据。相对宽松地剔除噪声基因,适当增加被选基因数量,进而利用二维主元分析法(2D—PCA)技术进行二次基因特征提取,并采用基于机器支持向量机(SVM)的分类形式。结果文中方法可获得90个二次特征和100.00%的分类精度;与直接利用一次特征进行分类相比,分类精度可提高2.78~8.35%。结论通过适当增加被选基因数量提取高效且维数相对较低的特征是可行的。 Objective To study a gene feature extraction method with high efficiency so as to overcome the problem of effective information lost due to the subjective threshold setting during noise gene elimination in conventional methods. Methods The data for the analysis were taken from public Leukemia dataset published by Golub etal. More selected genes were introduced properly by relaxing the constraints of threshold setting during the process of gene noise elimination. Two-Dimensional Principal Component Analysis (2D-PCA) tech nique was applied to the selected genes to extract secondary features. Support vector machine (SVM) based classifier was used for the classification. Results Ninety secondary features could be extracted using the pro-posed approach. Its classification accuracy was 100% and the overall classification accuracy could be in creased by 2.78 - 8.35 percent as compared with the elementary feature based classification. Conclusion It is feasible to extract more effect features with lower dimensions by introducing more selected genes properly. Key words: gene ; feature extraction ; secondary feature ; support vector machine ; classification
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2013年第5期367-370,共4页 Space Medicine & Medical Engineering
基金 浙江省自然科学基金资助(Y1100219)
关键词 基因 特征提取 二次特征 支持向量机 分类 gene feature extraction secondary feature support vector machine classification
  • 相关文献

参考文献2

二级参考文献11

  • 1郭瑞,张淑玲,汪小芬.人脸识别特征提取方法和相似度匹配方法研究[J].计算机工程,2006,32(11):225-227. 被引量:6
  • 2Webb A R. 统计模式识别[M]. 王 萍, 杨培龙, 罗颖昕, 译. 2版. 北京: 电子工业出版社, 2004. 被引量:1
  • 3Wang Liwei, Wang Xiao, Zhang Xuerong, et al. The Equivalence of Two Dimensional PCA and Line-based PCA[J]. Pattern Recognition Letters, 2005, 26(1): 57-60. 被引量:1
  • 4Zhang Daoqiang, Zhou Zhihua. (2D)2PCA: Two-directional Two-dimensional PCA for Efficient Face Representation and Recognition[J]. Neurocomputing, 2005, 69(1-3): 224-231. 被引量:1
  • 5Sanayha W, Rangsanseri Y. Relevance Weighted (2D)2LDA Image Projection Technique for Face Recognition Application[C] //Proc. of the 6th International Conference on Electrical Engineering/ Electronics, Telecommunications and Information Technology. [S. l.] : IEEE Press, 2009: 663-667. 被引量:1
  • 6Li Zhifeng, Tang Xiaoou. Nonparametric Discriminant Analysis for Face Recognition[J]. Pattern Analysis Machine Intelligence, 2009, 31(4): 755-761. 被引量:1
  • 7Li Ming, Yuan Baozong. 2-D-LDA: A Satistical Linear Discriminant Analysis for Image Matrix[J]. Pattern Recognition Letters, 2005, 26(5): 527-532. 被引量:1
  • 8Zhai Junhai, Bai Chenyan, Zhang Sufang. Face Recognition Based on 2DPCA and Fuzzy-rough Technique[C] //Proc. of the 9th Int’l Conference on Machine Learning and Cybernetics. Qingdao, China: [s. n.] , 2010. 被引量:1
  • 9黄亮,赵宇明.一种自适应的非参数判别分析方法[J].微计算机信息,2009,25(1):256-258. 被引量:4
  • 10范燕,郑宇杰,吴小俊,杨静宇.对称LDA及其在人脸识别中的应用[J].计算机工程,2010,36(1):201-202. 被引量:11

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部