期刊文献+

B(H)上广义Jordan triple可导映射

Generalized Jordan triple derivable mappings on B(H)
下载PDF
导出
摘要 利用算子论方法,证明了A∈B(H),若δ满足δ(AA*A)=δ(A)A*A-Aδ(A)*A+AA*δ(A),则S,T∈B(H)和λ∈{C\R}∪{0},且S*-S=T*-T=λI,使得A∈B(H)有δ(A)=SA-AT. Abstract:Using some methods of operator theory,it is proved that,if δ satisfies δ(AA* A) =δ(A)A* A-Aδ(A)* A+AA* δ(A) for all A∈ B (B),then there exist S,T∈ B(B),satisfying S*-S=T*-T=λI,for some λ∈ {C/R} ∪ {0},such that δ(A)=SA-AT for all A∈ B(B).
作者 张芳娟
出处 《西安工程大学学报》 CAS 2013年第4期520-523,共4页 Journal of Xi’an Polytechnic University
基金 陕西省教育厅自然科学研究计划项目(2012JK0873 2011JK0491)
关键词 JORDAN导子 广义Jordan triple可导映射 线性映射 Jordan derivation generalized Jordan triple derivable mappings linear maps
  • 相关文献

参考文献11

二级参考文献36

  • 1Johnson B. E., Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc., 1996, 120: 455-473. 被引量:1
  • 2Cheung W. S., Lie derivation of triangular algebras, Linear and Multilinear Algebra., 2003, 51: 299-310. 被引量:1
  • 3Mathieu M., Villena A. R., The structure of Lie derivations on algebras, J. Funct Anal., 2003, 202-" 504-525. 被引量:1
  • 4Zhang J., Lie derivations on nest subalgebras of von Neumann algebras, Acta Mathematica Sinica, Chinese Series, 2003, 46(4): 657-664. 被引量:1
  • 5Zhang J., Du W., Lie derivations on certain CSL algebras, Acta Mathematica Sinica, Chinese Series, 2008, 51(3): 475-480. 被引量:1
  • 6Breaar M., Commuting traces of biadditive mappings commutativity-preserving mappings and lie mappings, Trans. Amer. Math. Soc., 1993, 335: 525-546. 被引量:1
  • 7Bresar M., Semrl P., Commuting traces of biaditive maps revisited, Comm. Algebra., 2003, 31: 381-388. 被引量:1
  • 8Bresar M., Commuting maps: a survey, Taiwan Residents J. Math., 2004, 8:361 397. 被引量:1
  • 9Benkovic D., Erita D., Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra., 2004, 280:797-824. 被引量:1
  • 10Cheng W. S., Commuting maps of triangular algebras, J. London Math. Soc., 2001, 63: 117-127. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部