期刊文献+

兼顾属性距离及关系强度的密度聚类算法 被引量:2

Density-based clustering method considering attribute distance and relationship strength
下载PDF
导出
摘要 传统属性空间的密度聚类算法仅考虑对象属性取值相似度,网络空间密度聚类算法仅关注对象间关系紧密度。针对两类算法的不足,提出一种兼顾属性距离及关系强度的密度聚类算法。在构建兼顾属性距离及关系强度的网络之后,完善了近邻对象及核心对象的概念,并给出了相应的聚类策略。理论分析和实验结果表明,由于综合考虑了属性、关系及关系强度信息,算法规避了对象属性值分布对聚类过程的影响,改善了聚类效果,并能有效识别枢纽点和孤立点。 Traditional density-based clustering methods in attribute space just focus on the attribute distance between objects only, and the density-based clustering methods in network just use the relationship between objects. This paper proposed a density-based clustering method considering both attribute distance and relationship strength. After constructing the weighted network based on attribute distance and relationship strength, the algorithm refreshed the definition of near neighbor object and core object, and offered corresponding clustering policy. Theoretical analysis and test prove that the algorithm avoids the sad influence of the attribute value distribution, improves the clustering result, and distinguishes the hub and outlier objects which are useful in practice effectively.
作者 吴玲玉 白尘
出处 《计算机应用研究》 CSCD 北大核心 2013年第11期3283-3286,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(71271027)
关键词 聚类 加权网络 近邻对象 核心对象 clustering weighted network near neighbor object core object
  • 相关文献

参考文献11

  • 1ESTER M, KRIEGEK H P, SANDER J, et al. A density-based algo- rithm for discovering clusters in large databases[ C ]//Proc of the In- ternational Conference on Knowledge Discovery and Data Mining. 1996. 被引量:1
  • 2ANKERST M, BREUNIG M M, KRIEGEL H P, et al. Optics: orde- ring points to identify the clustering structure[ C ]//Proc of ACM SIG- MOD International Conference on Management of Data. 1999. 被引量:1
  • 3SHEIKHOLESLAMI G, CHATYERJEE S, ZHANG A. WaveCluster: a multi-resolution clustering approach for very large spatial databases [ C ]//Proc of the 24th VLDB Conference. 1998. 被引量:1
  • 4HINNEBURG A, KEIM D A. An efficient approach to clustering in large multimedia databases with noise [ C ]//Proc of the 4th Interna- tional Conference on Knowledge Discovery and Data Mining. 1998. 被引量:1
  • 5AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic sub- space clustering of high dimensional data for data mining applications [ C]//Proc of ACM SIGMOD Conference on Management of Data. 1998. 被引量:1
  • 6刘青宝,邓苏,张维明.基于相对密度的聚类算法[J].计算机科学,2007,34(2):192-195. 被引量:13
  • 7牛琨,张舒博,陈俊亮.采用属性聚类的高维子空间聚类算法[J].北京邮电大学学报,2007,30(3):1-5. 被引量:13
  • 8熊仕勇.一种新型的基于密度和栅格的聚类算法[J].计算机应用研究,2011,28(5):1721-1723. 被引量:4
  • 9储岳中,徐波.动态最近邻聚类算法的优化研究[J].计算机工程与设计,2011,32(5):1687-1690. 被引量:5
  • 10XU Xiao-wei, YURUK N, FENG Zhi-dan, et al. SCAN :a structural clustering algorithm for networks[ C]//Proc of the 13th ACM SIGK- DD International Conference on Knowledge Discovery and Data Min- ing. New York:ACM Press,2007:824-833. 被引量:1

二级参考文献30

  • 1薛方正,方帅,徐心和.多机器人对抗系统仿真中的对手建模[J].系统仿真学报,2005,17(9):2138-2141. 被引量:7
  • 2HanJiawei Kamber M 范明等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.. 被引量:6
  • 3Newman M E J. Scientific Collaboration Networks Ⅱ: Shortest Paths, Weighted Networks, and Centrality[J]. Physical Review E, 2001, 64(1): 132-135. 被引量:1
  • 4Girvan M, Newman M E J. Community Structure in Social and Biological Networks[EB/OL]. (2002-06-11). http://www.pnas.org/ cgi/reprint/99/12/7821 .pdf?ck=nck. 被引量:1
  • 5Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks[J]. Physical Review E, 2004, 69(2): 113. 被引量:1
  • 6Clauset A, Newman M E J, Moore C. Finding Community Structure in Very Large Networks[J]. Physical Review E, 2004, 70(6): 111. 被引量:1
  • 7Xu Xiaowei, Yuruk N, Fang Zhidan, et al. SCAN: A Structural Clustering Algorithm for Networks[C]//Proc. of the t3th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA: [s. n.], 2007: 824-833. 被引量:1
  • 8Xu Rui, Donald Wunsch. Survey of clustering algorithms [J]. IEEE Trans on Neural Networks,2005,16(3):645-678. 被引量:1
  • 9Lai Jim Z C,Liaw Yi-Ching.Improvement of the k-means clustering filtering algorithm [J]. Pattern Recognition, 2008,41 (12): 3677-3681. 被引量:1
  • 10Liaw Yi-Ching.Improvement of the fast exact pairwise-nearestneighbor algorithm[J].Pattern Recognition,2009,42(5):867-870. 被引量:1

共引文献41

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部