期刊文献+

基于普适云的大数据挖掘 被引量:8

Data Mining of Big Data Based on UbiCloud
下载PDF
导出
摘要 通过查阅大量相关文献资料,概述大数据和普适云的基本概念,提出基于普适云的大数据挖掘架构,在理论方面论证其可行性、论述其运行模式并进行了性能分析,分析总结了基于普适云的大数据挖掘所涉及的关键技术. By accessing to a large number of relevant documents, this paper outlined the basic concepts of Big Data and UbiCloud, and proposed data mining architecture of Big Data based on UbiCloud. Then, this thesis demonstrated the feasibility of the architecture, discussed the operating mode of it and analyzed its performance, in theory. Moreover, it analyzed and summarized the key technology involved with data mining of Big Data based on UbiCloud.
出处 《计算机系统应用》 2013年第11期7-12,共6页 Computer Systems & Applications
基金 中央高校基本科研业务费专项资金(14CX02032A)
关键词 普适计算 云计算 大数据 数据挖掘 UbiCloud ubiquitous computing cloud computing big data data mining ubiCloud
  • 相关文献

参考文献14

  • 1孟小峰.Cloud Computing and Big Data.北京:数据挖掘教学研讨会,2012. 被引量:1
  • 2孟小峰,慈祥.大数据管理:概念、技术与挑战.北京:中国人民大学信息学院,2012. 被引量:1
  • 3UN Global Pulse. Big Data for Development: Challenges &Opportunities.http://www.unglobalpul se.org/projects/BigDataforDevelopment. 被引量:1
  • 4陈援非,崔丽,朱珍民,曾益,吴元昆.UbiCloud:一种面向普适终端的云计算系统[J].计算机科学,2011,38(10):127-132. 被引量:4
  • 5亓开元,赵卓峰,房俊.基于MapReduce模型的大规模数据流处理.计算机学报,2012,35(3):476~489. 被引量:1
  • 6Weiss A. Computing in clouds. ACM Networker, 2007,11(4):18-25. 被引量:1
  • 7Buyya R, Yeo CS, Venugopal S, Market-oriented cloudcomputing: vision, hype, and reality for delivering ITservices as computing utilities. Proc. of the 2008 10th IEEEInternational Conference on High Performance Computingand Communications. 2008,0: 5-13. 被引量:1
  • 8Henricksen K, Indulska J. Infrastructure for pervasivecomputing; challenges. Proc.of the Informatik, Workshop onPervasive Computing. 2001. 214-222. 被引量:1
  • 9焦扬.普适计算的现状及发展.http:/Avenku.baidu.com/view/bea52981bceb 19e8b8f6ba7f.html. 被引量:1
  • 10Huifeng S, Yan L,Feng W_ A high-performance remotecomputing platform. Pervasive Computing and Commu-nications, 2009,PerCom 2009. IEEE International Confe-rence on. 2009. 1-6. 被引量:1

二级参考文献19

  • 1Byunggon C, Petros M. Augmented SmARTphone Applications Through Clone Cloud Execution[C]//HotOS 2009. 2009. 被引量:1
  • 2Rudolph L. A Virtualization Infrastructure that Supports Pervasive Computing[J]. IEEE Pervasive Computing, 2009,8 (4) : 8- 13. 被引量:1
  • 3Hayes J. Thin client's fat challenge [IT Desktop Computing] [J]. Engineering & Technology,2010,4(21):52-53. 被引量:1
  • 4Beaty K,Kochut A, Shaikh H. Desktop to cloud transformation planning[C]//.Parallel & Distributed Processing, 2009. IPDPS 2009, IEEE International Symposium on. 2009. 被引量:1
  • 5A1-Turkistany M, Helal A S, Schmalz M. Adaptive wireless thin-client model for mobile computing[J].Wirel. Commun. Mob. Comput. ,2009,9(1) :47-59. 被引量:1
  • 6Huifeng S,Yan L, Feng W, et al. A high-performanance remote computing platform[C]//Pervasive Computing and Communications, 2009, PerCom 2009. IEEE International Conference on, 2009. 2009 : 1-6. 被引量:1
  • 7Doyle P, et al. Ubiquitous desktops with multi-factor authentication[C]//Digital Information Management, 2008. ICDIM 2008, Third International Conference on. 2008. 被引量:1
  • 8Eiek S G, et al. Thin Client Visualization[C] //Visual Analytics Science and Technology, 2007. VAST 2007, IEEE Symposium on. 2007. 被引量:1
  • 9Lubonski M, Gay V, Simmonds A. A Conceptual Architecture for Adaptation in Remote Desktop Systems Driven by the User Perception of Multimedia[C]//Communications, 2005 Asia-Pacific Conference on. 2005. 被引量:1
  • 10Starner T. Thick clients for personal wireless devices[J]. Computer, 2002,35 (1) : 133-135. 被引量:1

共引文献4

同被引文献79

  • 1程政,雷霞,廖翔,马一凯,柏晓丽.数据挖掘在电网安全性评价中的应用[J].电气技术,2010,11(8):97-99. 被引量:4
  • 2邓波,张玉超,金松昌,林旺群.基于MapReduce并行架构的大数据社会网络社团挖掘方法[J].计算机研究与发展,2013,50(S2):187-195. 被引量:10
  • 3童晓渝,张云勇,房秉毅,李素粉.电信运营商实施云计算的策略建议[J].信息通信技术,2012,6(1):34-38. 被引量:11
  • 4张长海,胡孔法,陈凌.序列模式挖掘算法综述[J].扬州大学学报(自然科学版),2007,10(1):41-46. 被引量:5
  • 5Manyika J, Chui M, Brown B, et al. Big data: the next frontier for innovation, competition, and productivity, http://www. mckinsey.com/insights/mgi/research/technology_and_innovation/big_datathe_next_frontier_for_innovation, May 2011. 被引量:1
  • 6Big data, big impact: new possibilities for international development, http://www.weforum.org /reports/bigdata-big-impact- new-possibilities-international-development, January 2012. 被引量:1
  • 7Chaiken R, Jenkins B, Larson P, et al, SCOPE: easy and efficient parallel processing of massive data sets. Proceedings of the VLDB Endowment, Auckland, New Zealand, 2008:1265-1276. 被引量:1
  • 8Abadi D J, Ahmad Y, Balazinska M, et al. The design of the borealis stream processing engine. Proceedings of Second Biennial Conference on Innovative Data Systems Research, Asilomar, USA, 2005:277-289. 被引量:1
  • 9SAHNI S, WALIA R. Cloud computing &their benefits to future ap- plications [ J]. International Journal of Research in IT & Manage- ment, 2012, 2(2) : 82 - 92. 被引量:1
  • 10ARMBRUST M, FOX A, GRIFFITH R, et al. A view of cloud com- puting[ J]. Communications of the ACM, 2010, 53(4) : 50 - 58. 被引量:1

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部