期刊文献+

一类推广的择优增长系统的度分布 被引量:1

Degree Distribution of a Promoted Preferential Growth System
下载PDF
导出
摘要 研究文献[1]中提出的一类择优增长系统,将模型推广至成员成批到达的情形,经每时间步,系统中分别增加一个团体和m个成员.这m个成员相互独立的依概率p加入旧团体,且加入旧团体的概率与旧团体中的成员数成正比;依概率q=1-p加入新团体.该文利用马氏链方法严格证明系统度分布的存在性,并给出其精确解,从而得出该系统为无标度系统. We study a class of preferential growth system [1] and promote the model to a general situation.Considering there are m elements added to the system at each time step,The m elements can either join in the new group (with probability q =1-p) or dependently join in an already existing group with a probability proportional to the size thereof.Based on the Markov chain theory,we get the rigorous proof for the existence of the steady-state degree distribution and obtain the exact solution,then prove the model has scale-free property.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2013年第5期977-983,共7页 Acta Mathematica Scientia
基金 国家特色专业数学与应用数学(TS11496) 安徽省高等学校省级教学质量与教学改革工程重点项目(20101984) 安徽省高等学校省级自然科学研究项目(KJ2013Z268) 数学天元基金(11226200) 阜阳师范学院自然科学基金(2013FSKJ11)资助
关键词 择优增长系统 度分布 无标度性 马氏链 Preferential growth system Steady-state degree distribution Scale-free property Markov chain
  • 相关文献

参考文献2

二级参考文献18

  • 1Barabási A,Albert R.Emergence of scaling in random networks.Science,1999,286:509-512. 被引量:1
  • 2Newman M,Forrest S,Baldrop J.Email networks and the spread of computer viruses.Phys Rev E,2002,66:035101. 被引量:1
  • 3Wang J,Wilde P.Properties of evolving e-mail networks.Phys Rev E,200,70:066121. 被引量:1
  • 4Shi D,Liu L,Zhu S,et al.Degree distributions of evolving networks.Europhys Lett,2006,76:731-737. 被引量:1
  • 5Stolz O.Vorlesungen uber allgemiene Arithmetic.Leipzig:Teubner,1886. 被引量:1
  • 6Watts D, Strogatz S. Collective dynamics of "small-world" networks. Nature, 1998, 393:440-442. 被引量:1
  • 7Erdos P, Renyi A. On random graphs. Publications Mathematicae, 1959, 6:290-297. 被引量:1
  • 8Barabasi A, Albert R. Emergence of scaling in random networks. Science, 1999, 286:509- 512. 被引量:1
  • 9Barabasi A, Albert R, Jeong H. Mean-field theory for scale-free random networks. Physica A, 1999, 272 173-187. 被引量:1
  • 10Krapivsky P, Redner S, Leyvraz F. Connectivity of growing random networks. Physical review letters, 2000, 85:4629-4632. 被引量:1

共引文献3

同被引文献12

  • 1Watts D, Strogatz S, Collective Dynamics of "small world" Networks. Nature, 1998, 393:440-442. 被引量:1
  • 2Barabasi A, Albert R. Emergence of scaling in random networks. Science, 1999, 286:509-512. 被引量:1
  • 3Krapivsky, Redner S, Leyvraz F. Connectivity of growing random networks. Physical Review Letters, 2000, 85:4629-4632. 被引量:1
  • 4Dorogovtsev S N, Mendes J. Scaling properties of scale-free evolving networks: continuous approach. Physical Review E, 2001, 63(5): 056125-056143. 被引量:1
  • 5Bianconi G, Barabasi A. Competition and multiscaling in evolving networks. Euro physics Letter, 2011, 54:436-4421. 被引量:1
  • 6Barabasi A, Albert R. Mean-field theory for scale-free random network. Physical A, 1999, 272: 173-187. 被引量:1
  • 7Krapivsky, Redner, Leyvraz F. Connectivity of growing random networks. Physics Review Letters, 2000, 85:4629-4632. 被引量:1
  • 8Dorogovtsev S N, Mendes J. Structure of growth networks with preferential linking. Physical Review Letters, 2000, 85:4633-4636. 被引量:1
  • 9Shi D H, Chen Q H, Liu L M. Markov chain-based numerical method for degree distributions of growing networks. Physical Review E, 2005, 71:446-452. 被引量:1
  • 10Kullmann L, Kertesz J. Preferential growth: exact solution of the time dependent distributions Physical Review E, 2001, 63, 051112:63-70. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部