期刊文献+

长链烷基季铵盐插层氧化石墨的结构变化 被引量:7

Structure Change of Quaternary Alkylammonium-Graphite Oxide Intercalation Composite
下载PDF
导出
摘要 基于改进的Hummers法制备氧化石墨(GO),并以长链烷基季铵盐(CnTAB)对其进行插层处理;通过改变CnTAB的链长、浓度,得到系列CnTAB/GO插层复合物。采用XRD和元素分析对产物的最大底面间距及CnTAB插入量进行表征。结果表明,随着Cn TAB链长的增长、CnTAB浓度的增大,CnTAB/GO插层复合物的最大底面间距逐渐增大。CnTAB通过离子键作用和疏水键作用插入到GO层间,在GO片层上的吸附规律符合修正型(Modified)Langmuir模型,即CnTAB以单分子层吸附在GO片层上。根据CnTAB/GO插层复合物最大底面间距及CnTAB插入量的变化规律分析,得出CnTAB在GO层间的排布模式有单层平躺模式、类双层平躺模式、单层倾斜模式和单层直立模式。 The graphite oxide (GO) samples were prepared from flake graphite via modified Hummers method. A series of quaternary alkylammonium-graphite oxide intercalation composites (CnTAB/GO) were synthesized by changing the alkyl chain length and surfactant concentration, respectively. The structure and intercalated amount of CnTAB for intercalation composites were characterized by using XRD and elemental analysis. The results suggest that the interlayer spacing of CnTAB/GO composites increases with the increase of alkyl chain length or surfactant concentration, It is also found that the experimental data obtained from surfactants in GO spacing have been fitted well into the Modified Langmuir adsorption isotherm equations,indicating that the CoTAB molecules are adsorbed on the surface of GO within a monomolecular layer. The result of elemental analysis also suggests that surfactant is intercalated into GO spacing via electrovalent and hydrophobic interaction. Finally, the arrangement models of the surfactant in the layer of GO include lateral monolayer, lateral bilayer, paraffin-type monolayer and vertical monolayer.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2013年第11期2333-2338,共6页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.41272051) 西南科技大学博士基金(No.11ZX7135) 西南科技大学研究生创新基金(13ycjj49)资助项目
关键词 氧化石墨 烷基季铵盐 一维结构 排布模式 graphite oxide quaternary alkylammonium one-dimensional structure arrangement model
  • 相关文献

参考文献25

  • 1Stankovieh S, Dikin D A,Dommett H B. Nature, 2006,442(7100):282-286. 被引量:1
  • 2Wei T, Luo G L,Fan Z J,et al. Carbon, 2009,47:2296-2299. 被引量:1
  • 3Ramanathan T, Abdala A A,Stankovich S, et al. Nat. NanotechnoL, 2008,3:327-331. 被引量:1
  • 4Liang J J, Xu Y F, Huang Y,et al. Phys. Chem. C,2009,113:9921-9927. 被引量:1
  • 5Matsuo Y,Watanabe K,Fukutsuka T, et al. Carbon, 2003,41:1545-1550. 被引量:1
  • 6WU Ping-Xiao(吴平霄),LI Rong(李荣),DANG Zhi(党志).Huanan Ligong DaxueXuebao, 2006,34(5):15-19. 被引量:1
  • 7Huang Y, Ma X Y, Liang G Z, et al. Polymer, 2008,49:2085-2094. 被引量:1
  • 8Cao Y W, Feng J C, Wu P Y. Carbon,2010,48(5):1683-1685. 被引量:1
  • 9Liang Y, Wu D, Feng X,et al. Adv. Mater.,2009,21:1679-1683. 被引量:1
  • 10HANZhi-Dong(韩志东),WANG Jian-Qi(王建祺).Wuji Huaxue Xuebao,2003,19(5):459-461. 被引量:2

共引文献1

同被引文献68

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部