期刊文献+

网络舆情分析中共性知识挖掘方法研究 被引量:4

The Common Knowledge Mining for the Internet Public Opinion Analysis
原文传递
导出
摘要 共性知识挖掘是网络舆情中实现领域可移植的有效途径,提出从共性情感元素、共性语言模式两方面建立共性舆情知识库。共性情感元素挖掘主要通过半自动方法识别并从训练库中学习量化权值实现动态扩展知识库;共性语言模式挖掘主要从语法、语义角度弥补句法分析引入的错误,提出三类修正模型,包括主语转移模型、极端情感动词模型与情感修饰短距离依赖模型。最后从宗教、酒店两个领域进行验证,证实共性知识挖掘在系统可移植性方面具有一定效果。 The common knowledge mining is an effective way for the Internet public opinion analysis. This paper builds the common knowledge base for the common sentimental elements and the common language patterns. The common sentimental knowledge is mined by the semi - supervised method from the training corpus. This knowledge base is also quantified and dynamically expanded. The common language pattern knowledge includes three kinds of fixed models, such as transform model, extreme sentimental verb model and distance dependency model. Finally the common knowledge bases are testified in the domains of religions and hotels, and proved the effectiveness in the system implant performance.
出处 《现代图书情报技术》 CSSCI 北大核心 2013年第10期59-65,共7页 New Technology of Library and Information Service
基金 教育部人文社会科学基金项目"基于多层次情感分析的网络文本舆情监测方法研究"(项目编号:10YJC870003) 北京市哲学社会科学规划基金项目"北京市公共危机事件在网络传播中的演化机制与模型研究"(项目编号:13SHC031) 国家自然科学基金项目"面向维基百科的多粒度一体化信息抽取方法研究"(项目编号:61103112)的研究成果之一
关键词 舆情分析 共性知识挖掘 情感元素 语言结构 Public opinion analysis Common knowledge mining Sentimental element Language structure
  • 相关文献

参考文献14

二级参考文献109

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 3Kim S M, Hovy E. Determining the sentiment of opinions//Proceedings of the 20th International Conference on CL. Morristown: ACL, 2004:1367 - 1373. 被引量:1
  • 4Hu Minqing, Liu Bing. Mining and summarizing customer reviews//Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2004:168-177. 被引量:1
  • 5Pang B, Lee L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts//Proceedings of the ACL. Morristown: ACL, 2004:271 -278. 被引量:1
  • 6Yu H, Hatzivassiloglou V. Towards answering opinion questions: Separating facts from opinions and Identifying the polarity of opinion sentences//Proceedings of the Conference on Empirical Methods in NLP. Morristown: ACL, 2003 : 129 - 136. 被引量:1
  • 7Hatzivassiloglou V, Wiebe J. Effects of adjective orientation and gradability on sentence subjectivity//DFKI. Proceedings of 18th International Conference on CL. Morristown : ACL, 2000 : 299 - 305. 被引量:1
  • 8Nasukawa T, Yi J. Sentiment analysis: Capturing favorability using natural language processing//Proceedings of the International Conference on Knowledge Capture. New York : ACM, 2003 : 70 -77. 被引量:1
  • 9Pang Bo, Lee L. Thumbs up? Sentiment classification using machine learning techniques//Proceedings of the Conference on Empirical Methods in NLP. Morristown: ACL, 2002:79 -86. 被引量:1
  • 10Dave K, Lawrence S, Pennock D. Mining the peanut gallery: Opinion extraction and semantic classification of product reviews// ACM. Proceedings of the 12th International World Wide Web Conference. New York : ACM, 2003 : 519 - 528. 被引量:1

共引文献508

同被引文献67

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部