摘要
利用条件极值判别法和连续函数的介值性定理,通过构造辅助函数获得拉格郎日定理的一个推广,即若f(x)在(a,b)内2n次可导(n≥2,n∈Z),f(2n)(ξ)≠0,f(3)(ξ)=f(4)(ξ)=…=f(2n-1)(ξ)=0(a<ξ<b),则存在a1,b1∈(a,b),使得f(b1)-f(a1)=f′(ξ)(b1-a1).
This paper proves the following result by using extreme discrimination, intermediate value theorem, and certain auxiliary function. If a function f(x) has 2n-orderderivative, and f(2n)(ξ)≠0,f(3)(ξ)=f(4)(ξ)=…=f(2n-1)(ξ)=0(a〈ξ〈b),n≥2,n∈Z),then there are two points a1, b1 in the interval (a,b) such that f(b1)-f(a1)=f′(ξ)(b1-a1)This result is a generalized one of Lagrange theorem.
出处
《高等数学研究》
2013年第5期51-51,53,共2页
Studies in College Mathematics
关键词
导数
介值性定理
极值判别法
derivative, intermediate value theorem, extreme discrimination