期刊文献+

ECLHadoop:基于Hadoop的有效电子商务物流大数据处理策略 被引量:13

ECLHadoop:efficient big data processing strategy based on Hadoop for electronic commerce logistics
下载PDF
导出
摘要 随着云计算的快速发展,越来越多的电子商务服务应用面临处理大数据的要求,例如电子商务物流服务中顾客通过社会媒体发布而产生的大量数据。为提高电子商务物流大数据的处理效率,基于Hadoop设计了一种称为ECLHadoop的有效电子商务物流大数据处理策略,通过将相关的数据块放入相同的数据节点,进而达到降低MapReduce I/O代价的目的,尤其是降低shuffling阶段的I/O代价。仿真实验结果显示,基于Hadoop的ECLHadoop大数据处理策略能够较好地进行电子商务物流服务中的数据密集型分析,提高电子商务物流大数据计算效率。 With the rapid development of cloud computing,more and more electronic commerce applications are confronted with the problems of processing big data,such as big data from the social media posted by the customers of electronic commerce logistics.In order to improve the big data processing efficiency in electronic commerce logistics,an efficient big data processing strategy based on Hadoop is designed,which is named ECLHadoop.In ECLHadoop,those closely related data blocks are placed at the same nodes,which can help to reduce the MapReduce I/O cost,especially the I/O cost at the shuffling stage.The simulation experiment results show that,based on Hadoop,the ECLHadoop can improve the big data computing efficiency for data-intensive analysis in the electronic commerce logistics service.
作者 魏斐翡
出处 《计算机工程与科学》 CSCD 北大核心 2013年第10期65-71,共7页 Computer Engineering & Science
基金 国家自然科学基金青年项目(71101047) 湖北省自然科学基金资助项目(2012FFB00801)
关键词 大数据 数据放置 大数据分析 大数据计算策略 电子商务物流 big data data placement big data analysis big data computing strategy electronic commerce logistics
  • 相关文献

参考文献12

  • 1DeanJ , Ghemawat S. Maplceduce , Simplified data processing on large clusters[CJ IIProc of the the 6th Symposium on Op?erating System Design and Implementation, 2004: 1-13. 被引量:1
  • 2HadoopMapReduce[EB/OL].[2013-02-13]. http://hadoop. a?pache. org/docs/rO. 20. 2/mapred_tutorial html. 被引量:1
  • 3Ghemawat S, Gobioff H, Leung S-T. The Google file sys?tem[CJIIProc of the 19th Symposium on Operating Systems Principles, 2003: 29-43. 被引量:1
  • 4HDFS[EB/OLJ.[2013-03-22J. http://hadoop. apache. org/ docs/hdfs/ current/hdfs_design. htrnl. 被引量:1
  • 5DittrichJ, Quian e-RuizJ A,Jindal A, et al. Hadoop } +: Making a yellow elephant run like a cheetah (without it even noticing)[lJ. Proceeding of the VLDB Endowment, 2010,3 0-2) :518-529. 被引量:1
  • 6Eltabakh MY, Tian Yuan-yuan, Ozcan F, et al. CoHadoop: Flexible data placement and its exploitation in Hadoop[J]. Proceeding of the VLDB Endowment, 2011,4(9) :575-585. 被引量:1
  • 7Abouzeid A, Bajda-Pawlikowski K, Abadi D, et al. Hadoop?DB: An architectural hybrid of MapReduce and DBMS techn?ologes for analytical workloads]]]. Proceeding of the VLDB Endowment, 2009,2(]) :922-933. 被引量:1
  • 8Hadoop[EB/OL].[2013-01-21]. http: / / hadoop. apache. org/. 被引量:1
  • 9EkanayakeJ, Li Hui , Zhang Bing-jing, et al. Twister: A runt?ime for iterative MapReduce[CJ II Proc of the 1 st Interna?tional Workshop on MapReduce and Its Applications, 2010: 124-141. 被引量:1
  • 10Bu Y Y, Howe B, Balazinska M, et al. Ha l.oopEfficient iterative data processing on large clusters[J]. Proceeding of VLDB Endowment, 2010,30-2) :285-296. 被引量:1

同被引文献107

引证文献13

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部