期刊文献+

多源DEM空间域加权最优融合方法研究 被引量:3

Study on Weight Optimal Fusion of Multi -Source DEM in Spatial Domain
下载PDF
导出
摘要 全球许多区域都拥有不同类型、来源和精度的数字高程模型(DEM)数据,为利用多源DEM的互补信息开发出质量更高的DEM,提出多源DEM的空间域加权最优融合方法。以秦岭典型高山峡谷地貌类型区为试验样区,选取相同位置的航天飞机雷达地形测绘任务(SRTM)与先进星载热发射和反射辅射仪全球数字高程模型(ASTERDEM)数据,并以1:5万DEM作为参照数据,通过重采样、数据配准、系统误差消除等步骤形成融合数据源,以均方根误差(RMSE)性能指标最优为准则遍历权重系数,生成融合DEM。将融合前后的数据分别与参照数据作精度比较,总体统计与抽样剖面检查表明:融合DEM精度较源数据均得到了提高,该融合技术为应用多源DEM生成精度和可靠性更高的DEM产品提供了可行方案。 There exist multiple DEMs of different kinds and of various accuracies in most regions of the world. In order to develop DEM with better quality with complementary information provided by multi - source DMEs, a weight optimal fusion of multi - source DEM in spatial domain is put forward. The typical physiognomy of the Qinling mountains is chosen as region of in- terest, SRTM and ASTER DEM data of the same areas are selected and 1:50,000 -scale DEM is used as reference data. The fused data source is formed after preprocessing SRTM and ASTER DEM data by re - sampling, co - registering and systemic error eliminating. Then, the performance index of RMSE is optimized through ergodic process of weight, and the fused DEM is pro- duced. The accuracy of data before and after fusion are compared with 1:50,000 DEM respectively, and the collectivity statistic and spot check results show that the accuracy of fusion DEM has improved compared with that of original DEM. It proves that the weight optimal fusion provides an effective and reliable method for producing DEM from multi - source DEM.
出处 《测绘科学与工程》 2013年第4期69-74,共6页 Geomatics Science and Engineering
关键词 加权最优 空间域融合 遍历权重 RMSE DEM weight optimal spatial domain fusion ergodic process of weight RMSE DEM
  • 相关文献

同被引文献31

  • 1凌峰,王乘,张秋文.基于ASTER数据和空间误差分析的SRTM无效区域填充[J].华中科技大学学报(自然科学版),2006,34(12):108-110. 被引量:15
  • 2杨成松,朱长青.基于小波变换的矢量地理空间数据数字水印算法[J].测绘科学技术学报,2007,24(1):37-39. 被引量:23
  • 3阮秋奇.数字图像处理学[M].北京:电子工业出版社.2001:180-232. 被引量:12
  • 4RABUS B,EINEDER M,ROTH A,et al.The Shuttle Radar Topography Mission-a New Class of Digital Elevation Models Acquired by Spaceborne Radar[J] .ISPRS Journal of Photogrammetry and Remote Sensing,2003,57(4):241-262. 被引量:1
  • 5FUJISADA H,BAILEY G B,KELLY G G,et al.ASTER DEM Performance[J] .IEEE Transactions on Geoscience and Remote Sensing,2005,43(12):2707-2714. 被引量:1
  • 6CROSETTO M,CRIPPA B.Optical and Radar Data Fusion for DEM Generation[J] .ISPRS Journal of Photogrammetry and Remote Sensing,1998,32:128-134. 被引量:1
  • 7KAAB A.Combination of SRTM3 and Repeat ASTER Data for Deriving Alpine Glacier Flow velocities in the Bhutan Himalaya[J] .Remote Sensing of Environment,2005,94:463-474. 被引量:1
  • 8SCHULTZ H,RISEMAN E M,STOLLE F R,et al.Error Detection and DEM Fusion Using Self-consistency[C] ∥The Proceedings of the Seventh IEEE International Conference on Computer Vision.Los Alamitos,CA:IEEE Computer Society,1999:1174-1181. 被引量:1
  • 9RAO Y S,RAO K S,VENKATARAMAN G,et al.Comparison and Fusion of DEMs Derived from InSAR and Optical Stereo Techniques[C] ∥Third ESA International Workshop on ERS SAR Interferometry.Frascati,Italy,2003:1-5. 被引量:1
  • 10MANOJ KARKEE,BRIAN L STEWARD,SAMSUZANA ABD AZIZ.Improving Quality of Public Domain Digital Elevation Models through Data Fusion[J] .Bio systems engineering IOI,2008:293-305. 被引量:1

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部