期刊文献+

Barom etric altim eter in wireless com m unication network indoor positioning system

Barom etric altim eter in wireless com m unication network indoor positioning system
下载PDF
导出
摘要 A differential barometric altimetry technology based on the digital pressure sensors is put forward by using the existing mobile phone base station as reference. The height of known base sta- tion is precise. The pressure and temperature of the known base station is measured by sensors and transmitted to users. The absolute height value of user will be calculated by combining the baromet- ric pressure values and temperature values from the base station with the locally measured values. In order to decrease system errors caused by inconsistency between the measured pressure value at base station and the locally measured pressure value, weights correction is applied based on multiple reference stations. The calculated height value is accurate due to eliminating the measured errors caused by irregular changes of atmospheric pressure, with the error less than 1 m. Resolution of ele- vation positioning depends upon the resolution of the pressure sensor, the relationship between which is approximately linear. When the resolution of sensor is 0.01 hPa, the resolution of elevation positioning is about 0. 1 m. In addition, the data frame format at base station is designed in this arti- cle. Experimental results show that the method is accurate, reliable, stable and has the ability to distinguish floors and stair steps. A differential barometric altimetry technology based on the digital pressure sensors is put forward by using the existing mobile phone base station as reference. The height of known base sta- tion is precise. The pressure and temperature of the known base station is measured by sensors and transmitted to users. The absolute height value of user will be calculated by combining the baromet- ric pressure values and temperature values from the base station with the locally measured values. In order to decrease system errors caused by inconsistency between the measured pressure value at base station and the locally measured pressure value, weights correction is applied based on multiple reference stations. The calculated height value is accurate due to eliminating the measured errors caused by irregular changes of atmospheric pressure, with the error less than 1 m. Resolution of ele- vation positioning depends upon the resolution of the pressure sensor, the relationship between which is approximately linear. When the resolution of sensor is 0.01 hPa, the resolution of elevation positioning is about 0. 1 m. In addition, the data frame format at base station is designed in this arti- cle. Experimental results show that the method is accurate, reliable, stable and has the ability to distinguish floors and stair steps.
出处 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期380-386,共7页 北京理工大学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(61001109) the Pilot Program for the New and Interdisciplinary Subjects of the Chinese Academy of Sciences(KJCX2-EWJ01) the Knowledge Innovation Program of the Chinese Academy of Sciences(KGCX2-EW-4071)
关键词 differential barometric altimetry wireless communication indoor positioning system micro-electro mechanical system (MEMS) MS5534C BP5607 differential barometric altimetry wireless communication indoor positioning system micro-electro mechanical system (MEMS) MS5534C BP5607
  • 相关文献

参考文献2

二级参考文献10

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部