摘要
压电复合材料层板由压电片与纤维层叠合而成。基于等效单层理论的位移场和电势场,针对正交铺层压电复合材料层板柱面弯曲问题,建立了力电耦合平衡方程,获得了一般边界的解析解。解析解由特解和通解两部分组成,特解对应于简支边界条件,通解由其他各类边界条件确定。平衡方程的变量仅4个,且不随层数变化。如采用相应的位移和电势分布函数,可以得到一阶理论、高阶理论、指数型理论等多种理论的解析解。算例中给出了各种边界条件下位移、应力和电势的解,讨论了各种理论的精度,观察到了固支边界的应力奇异现象。
A piezoelectric composite laminate consists of piezoelectric and fabric layers. Based on the displacement and potential fields of equivalent single layer theories, piezoelectric equilibrium equations are built and the analytical solutions are deduced for a cross-ply piezoelectric composite laminate in cylindrical bending with various boundary conditions. The analytical solutions consist of particular and complementary solutions. The particular solution is obtained for simply-supported boundary conditions, while the complementary solution is determined by other boundary conditions. The equilibrium equations have only four variables regardless of the number of layers. The analytical solutions of the first-order, Reddy's higher-order, and exponential-type theories may be obtained when the corresponding distribution functions of displacement and potential are used. The results of displacement, stress and potential under various boundary conditions are given and the accuracy of various theories is discussed in numerical examples. The singular effects of stresses near clamped edges are observed.
出处
《工程力学》
EI
CSCD
北大核心
2013年第10期288-295,共8页
Engineering Mechanics
基金
江苏省优势学科基金项目(苏财教(2011)209号)
关键词
压电材料
复合材料
层板理论
解析解
边界条件
piezoelectricity
composite
laminate theory
analytical solution
boundary condition