期刊文献+

基于极大似然估计的多参考点模态参数识别方法 被引量:3

POLY-REFERENCE MODAL PARAMETERS IDENTIFICATION BASED ON MAXIMUM LIKELIHOOD ESTIMATOR
原文传递
导出
摘要 在考虑随机噪声的情况下,实现了一种基于极大似然估计的多参考点频域模态参数识别方法。该方法采用频响函数的右矩阵分式模型,通过噪声的协方差矩阵对误差向量加权,使用离散时间域中基函数改善数值求解性态。模态参数的估计过程分为两步:首先由基于最小二乘估计的polyLSCF算法获取迭代初值,然后通过Gauss-Newton方法对极大似然函数进行迭代优化,得到精度更高的模态参数识别结果。采用GARTEUR仿真算例对所给出的方法进行了验证,结果表明:在高噪声情况下,利用噪声信息的极大似然估计方法能够显著提高模态参数的识别精度,特别是阻尼的识别精度。 A frequency-domain modal parameters identification method based on maximum likelihood estimation is investigated considering stochastic noise. This method uses right matrix fraction description model of frequency response function. The noise covariance matrix is adopted as weighting function. The basis function in discrete time domain is utilized for improving numerical condition. First, the least square estimation is implemented to get the initial value of modal parameters. Then, the iterative optimization of Gauss-Newton method is carried out to get more precise identification result. A simulation case of GARTEUR model is employed to validate the method. Results show that the accuracy of modal parameters is improved obviously from maximum likelihood estimation method under high noise, especially for the damping ratio accuracy.
出处 《工程力学》 EI CSCD 北大核心 2013年第10期65-70,共6页 Engineering Mechanics
基金 中央高校基本科研业务费专项基金项目(12CX04051A) 青岛市科技计划项目(1314204jch)
关键词 随机噪声 模态参数识别 最小二乘估计 极大似然估计 Gauss—Newton方法 stochastic noise modal parameter identification least square estimation maximum likelihoodestimation Gauss-Newton method
  • 相关文献

参考文献11

  • 1Pintelon R, Guillaume P, Rolain Y, Schoukens J. Parametric identification of transfer functions in the frequency domain - a survey [J]. IEEE Transactions on Automatic Control, 1994, 39(11): 2245-2260. 被引量:1
  • 2Verboven P, Guillaume P, Cauberghe B, et al. Frequency- domain generalized total least-squares identification for modal analysis [J]. Journal of Sound and Vibration, 2004, 278(22): 21-38. 被引量:1
  • 3Cauberghe B. Applied frequency-domain system identification in the field of experimental and operational modal analysis [D]. Belgium: Vrije Universiteit Brussel, 2004. 被引量:1
  • 4陈光,王永.密集模态挠性结构模型多变量频域辨识和控制[J].实验力学,2008,23(2):141-148. 被引量:2
  • 5Schoukens J, Pintelon R, Renneboog J. A maximum likelihood estimator for linear and nonlinear systems-a practical application of estimation techniques in measurement problem [J]. IEEE Transactions on Instrument and Measures, 1988, 37(1): 10-17. 被引量:1
  • 6Guillaume P, Verboven P, Vanlanduit S. Frequency-domain maximum likelihood identification of modal parameters with confidence intervals [C]// Proceeding oflSMA 23, 1998. 被引量:1
  • 7Verboven P, Guillaume E Cauberghe B, et al. Modal parameter estimation from input-output Fourier data using frequency-domain maximum likelihood identification [J]. Journal of Sound and Vibration, 2004, 276(22): 957-979. 被引量:1
  • 8Parloo E, Guillaume P, likelihood identification of data [J]. Journal of Sound 971-991. Cauberghe B. Maximum non-stationary operational and Vibration, 2003, 268:. 被引量:1
  • 9Pintelon R, Schoukens J. Frequency domain maximum likelihood estimation of linear dynamic errors-in-variables models [J]. Automatica, 2007, 43(4): 621-630. 被引量:1
  • 10Guillaume P, Verboven P, Vanlanduit S, et al. A poly-reference implementation of the least-squares complex frequency domain estimator [C]// Proceeding of the 21th IMAC. Kissimmee, USA, February 2003:. 被引量:1

二级参考文献5

共引文献1

同被引文献30

  • 1于雯,贾启芬,刘习军,杜颖.汽车分段线性悬架系统的运动稳定性分析[J].机械科学与技术,2005,24(3):327-329. 被引量:5
  • 2陆冬,汤宝平,何启源,魏玉果.模态参数识别中频响函数估计的最小二乘优化[J].重庆大学学报(自然科学版),2007,30(3):6-10. 被引量:11
  • 3范让林,吕振华.液阻悬置非线性动特性及其参数识别方法[J].机械工程学报,2007,43(7):145-151. 被引量:10
  • 4张乃通,李晖,张钦宇.深空探测通信技术发展趋势及思考[J].宇航学报,2007,28(4):786-793. 被引量:75
  • 5Satorius E, Estabrook P, Wilson J, et al. Direct-to-Earth communications and signal processing for Mars exploration rover entry, descent and landing [ R ]. The Interplanetary Network Progress Reoort. IPN Progress Report. Mav 2003. 被引量:1
  • 6Vilnrotter V A, Hinedi S, Kumar R. Frequency estimation techniques for high dynamics trajectories [J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25 (4) : 559 -577. 被引量:1
  • 7Gini F, Montanari M, Verrazzani L. Estimation of chirp Radar signals in compound-gaussian clutter: a cyclostationary approach I J]. IEEE Transactions on Signal Processing, 2000, 48 (4): 1029 - 1039. 被引量:1
  • 8Shamsunder S, Giannakis G B. Detection and estimation of chirp signals in non-gaussian noise [ C]. Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 1 -3, 1993. 被引量:1
  • 9Koloda J, Ostergaard J, Jensen S H, et al. Sequential error concealment for video/images by sparse linear prediction [ J ]. IEEE Transactions on Multimedia, 2013, 15 (4) : 957 -969. 被引量:1
  • 10Liu J, Zhai G T, Yang X K, et al. Spatial error concealment with adaptive linear predictor [ C ]. 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne,Australia. June 1 -5, 2014. 被引量:1

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部