期刊文献+

边缘保持滤波与视觉最优准则的人脸图像光照归一化

Normalization of Face Illumination Based on Edge-Preserving Filter and Visually Optimal Criterion
下载PDF
导出
摘要 受计算摄影学中边缘保持滤波器的启发,提出一种人脸图像光照归一化方法,能有效处理复杂光照条件下的人脸识别问题.该方法采用加权最小均方边缘保持滤波器将亮度图像精确地分解为反射层与阴影层,根据视觉最优准则进行直方图匹配映射,获得视觉质量最优的光照归一化人脸图像.对YALE-B与CMU-PIE人脸数据库的识别结果表明该方法有效. Inspired by the edge-preserving filter used in computational photography, we propose a method of illumination normalization for face recognition under varying lighting conditions. The brightness layer of a face image is accurately decomposed into a reflectance layer and a shading layer with a weighted least square filter. The histogram of the reflectance layer is remapped to that of sample images selected based on a visually optimal criterion to obtain an image with the best visual quality. face databases demonstrate effectiveness of the proposed Experimental results on the YALE-B and CMU-PIE method under varying illumination conditions.
出处 《应用科学学报》 CAS CSCD 北大核心 2013年第5期519-525,共7页 Journal of Applied Sciences
基金 陕西省重大科技创新项目基金(No.2009ZKC02-17) 西安市科技计划项目基金(No.CXY1127(4))资助
关键词 人脸识别 光照归一化 加权最小均方滤波 视觉最优 face recognition, illumination normalization, weighed least square filter, visually optimal
  • 相关文献

参考文献32

  • 1SHAN Shiguang, GAO Wen, CAO Bo, ZHAO Debin. Il- lumination normalization for robust face recognition against varying lighting conditions [Cl//Proceedings of the IEEE Analysis and Modeling of Faces and Ges- tures. 2003: 157-164. 被引量:1
  • 2XIE X D, LAM K M. Face recognition under vary- ing illumination based on a 2D face shape model [J]. Pattern Recognition, 2005, 38(2): 221-230. 被引量:1
  • 3CHEN W L, ER M J, Wu S Q. Illumination compen- sation and normalization for robust face recognition using discrete cosine transform in logarithm domain [J]. IEEE Transactions on Systems, Man, and Cyber- netics, Part B: Cybernetics, 2006, 36(2): 458-466. 被引量:1
  • 4CHOI S I, JEONG G M. Shadow compensation using Fourier analysis with application to face recognition [J]. IEEE Signal Processing Letters, 2011, 18(1): 23- 26. 被引量:1
  • 5BLANZ V, VETTER W. Face recognition based on fit- ting a 3D morphable model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1063-1074. 被引量:1
  • 6ZHAO W Y, RAMA C. Illumination-insensitive face recognition using symmetric shape-from-shading [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2000, 1: 286-293. 被引量:1
  • 7ZHANG Taiping, TANG Yuanyan, FANG Bin, SHANG Zhaowei, LIu Xiaoyu. Face recognition under varying illumination using gradientfaces [J]. IEEE Transac- tions on Image Processing, 2009, 18(11): 2599-2606. 被引量:1
  • 8GARCIA C, ZIKOS G, TZIRITAS (7]. A wavelet-based framework for face recognition [C]//Proceedings of the Workshop on Advances in Facial Image Analysis and Recognition Technology, 5th European Confer- ence on Computer Vision (ECCV'98), Freiburg Alle- magne, 1998: 84-92. 被引量:1
  • 9OKADA K, STEFFENS J, MAURER T. The Bochum/USC face recognition system and how it fared in the FERET phase III test [M]//Face Recognition: Prom Theory to Applications. Berlin: Springer-Verlag, 1998: 186-205. 被引量:1
  • 10HAFED Z M, LEVINE M D. Face recognition using the discrete cosine transform [J]. International Jour- nal of Computer Vision, 2001, 43(3): 167-188. 被引量:1

二级参考文献21

  • 1Phillips PJ,Grother P,Micheals RJ,Blackburn DM,Tabassi E,Bone JM.Face recognition vendor test 2002 results.Evaluation Report,2003. 被引量:1
  • 2Phillips PJ,Syed HM,Rizvi A,Rauss PJ.The FERET evaluation methodology for face-recognition algorithms.IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(10):1090-1104. 被引量:1
  • 3Brunelli R,Poggio T.Face recognition:features vs.templates.IEEE Trans.on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1053. 被引量:1
  • 4Turk M,Pentland A.Face recognition using eigenfaces.In:Negahdaripour S,et al.,eds.Proc.of the IEEE Conf.on Computer Vision and Pattern Recognition.Maui:IEEE Computer Society Press,1991.586-591. 被引量:1
  • 5Belhumer P,Hespanha P,Kriegman D.Eigenfaecs vs fisherfaces:Recognition using class specific linear projection.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720. 被引量:1
  • 6Porat M,Zeevi Y.The generalized Gabor scheme of image representation in biological and machine vision.IEEE Trans.on Pattern Analysis and Machine Intelligence,1988,10(4):452-468. 被引量:1
  • 7Wiskott L,Fellous JM,Kruger N,Malsburg C.Face recognition by elastic bunch graph matching.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):775-779. 被引量:1
  • 8Liu CJ,Wechsler H.Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition.IEEE Trans.on Image Processing,2002,11(4):467-476. 被引量:1
  • 9Shan SG.Study on some key issuses in face recognition[Ph.D.Thesis].Beijing:Institute of Computing Technology,the Chinese Academy of Sciences,2004 被引量:1
  • 10Vapnik VN,Write; Zhang XG,Trans.The Nature of Statistical Learning Theory.Beijing:Tsinghua University Press,2000. 被引量:1

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部