期刊文献+

Riordan型多项式序列的递归关系 被引量:1

Recurrence Relations for Polynomial Sequences of Riordan Type
下载PDF
导出
摘要 若一个多项式序列的系数构成的矩阵是一个Riordan矩阵,就称其为Riordan型多项式序列.利用Riordan矩阵的生成矩阵,得到了Riordan型多项式序列的递归关系,证明了Riordan型多项式序列的一般项恰好是生成矩阵的主子矩阵的特征多项式. If a matrix consisting of the coefficients of polynomial sequence is a Riordan matrix,it is known as a polynomial sequence of Riordan type.Using production matrix of a Riordan array,we obtain recurrence relations for polynomial sequences associated with the Riordan array,and we also show that the general term for the sequence can be expressed as the characteristic polynomial of the principal submatrix of the production matrix.
出处 《甘肃科学学报》 2013年第3期1-4,共4页 Journal of Gansu Sciences
关键词 Riordan矩阵 生成矩阵 行列式 递归关系 Riordan array production matrix determinant recurrence relation
  • 相关文献

参考文献12

  • 1Sprugnoli R. Riordan Arrays and the Abel Gould Idnetity[J]. Discrete Math. , 1995,142:213-233. 被引量:1
  • 2Shapiro L. Bijections and the Riordan Group[J]. Theoret. Comput. Sci. ,2003,307:403-413. 被引量:1
  • 3Shapiro L,Getu S,Woan W,et al. The Riordan Group[J]. Discrete Appl. Math. ,1991,34:229-239. 被引量:1
  • 4He Tianxiao, Sprugnoli R. Sequence Characterization of Riordan Arrays[J]. Discrete Math. , 2009,309 : 3 962-3 974. 被引量:1
  • 5Merlini D, Rogers D, Sprugnoli R, et al. On Some Alternative Characterizations of Riordan Arrays[J]. Canad. J. Math. , 1997,49 (2) :301- 320. 被引量:1
  • 6Munarini E. Riordan Matrices and Sums of Harmonic Numbers[J]. Appl. Anal. Discrete Math. , 2011,5: 176-200. 被引量:1
  • 7Sprugnoli R. Riordan Arrays and Combinatorial Sums[J]. Discrete Math. , 1994,132:267-290. 被引量:1
  • 8Wang W, Wang T. Generalized Riordan Arrays[J]. Discrete Math. , 2008,308 : 6 466-6 500. 被引量:1
  • 9Deutsch E, Ferrari L, Rinaldi S. Production Matrices and Riordan Array[J]. Annals of Combinatorics, 2009,13 : 65-85. 被引量:1
  • 10Luzon A, Moron M. Recurrence Relations for Polynomial Sequences Via Riordan Matrices[J]. Linear Algebra Appl. , 2010,433 1 422- 1 446. 被引量:1

同被引文献8

  • 1Storer T. Cyclotomiy and Difference Set[M]. Chicago: Mark- ham,1967. 被引量:1
  • 2Whiteman A. L. A Family of Difference Sets[J]. lllinois J. Math. ,1962,6,107-121,. 被引量:1
  • 3Ding C. Linear Complexity of Generalized Cyclotomic Binary Sequence of Order 2[J]. Finite Fields and Their Applications, 1997,3:159-174. 被引量:1
  • 4Ding C. Autocorrelation Values of Generalized Cyclotomic Se- quences of Order Two[J]. IEEE Transactions on Information Theory, 1998,44(5) :i 699-I 702. 被引量:1
  • 5Tang X,Ding C. New Classes of Balanced Quaternary and A]- most Balanced Binary Sequences with Optimal Autocorrelation Value[J]. IEEE Transactions on Information Theory, 2010, 56:6 398-6 405. 被引量:1
  • 6Edemskiy V. About Computation of the Linear Complexity of Generalized Cyclotomic Sequenceswith Period p"+I[J]. DesigasCodes Cryptography,2011,61(3) :251-260. 被引量:1
  • 7Hu L,Yue Q,Wang M. The Linear Complexity of Whiteman's Generalized Cyclotomie Sequences of Period p,,,+l q [J]. IEEE Transactions on Information Theory, 2012,58(8) .. 5 534- 5 542. 被引量:1
  • 8胡丽琴,岳勤,朱小萌.具有两个非零点循环码的权重分布[J].中国科学:数学,2014,44(9):1021-1034. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部