期刊文献+

基于复形法和云模型的差分进化混合算法

Hybrid differential evolution algorithm based on complex method and cloud model
下载PDF
导出
摘要 为了改善差分进化算法的收敛速度和优化精度,提出一种基于复形法和云模型的差分进化混合算法(HDECC)。该算法使用差分进化算法搜索局部最优域,引入复形法和云模型来加快算法的收敛速度和提高算法优化精度,使算法的初期搜索速度和之后的优化精度得到相互平衡。最后,使用七个标准约束优化问题和两个典型工程应用实例进行实验仿真,实验结果表明,与同类算法比较,HDECC算法全局搜索能力强、优化精度高、收敛速度快,且算法更稳定。 In order to improve the differential evolution algorithm's convergence speed and optimization accuracy, this paper proposed a new algorithm which named a hybrid differential evolution algorithm based on complex method and cloud model (HDECC). The new algorithm used the differential evolution algorithm to search the optimal area first, then introduced the complex method to accelerate the convergence rate of the algorithm and made use of cloud model to improve the optimization accuracy of the algorithm, so that it balanced the preliminary search speed and accuracy in the later stage. Finally, it used seven standard constrained optimization problems and two typical engineering applications to simulate. Experimental results show that, compared with similar algorithms, HDECC is robust in solving global optimal solution, has higher accurate numeri- cal solution, achieves more raDid convergence rate. and maintains good stability.
出处 《计算机应用研究》 CSCD 北大核心 2013年第10期2981-2985,共5页 Application Research of Computers
基金 西部交通建设科技项目(2011318740240)
关键词 差分进化 复形法 云模型 混合 算法 differential evolution( DE ) i complex method cloud model hybrid algorithm
  • 相关文献

参考文献22

  • 1COELLO C A C, BECERRA R L. Evolutionary multiobjective opti-mization using a cultural algorithm[ C]//Proc of IEEE Swarm Intelli-gence Symposium. Indianapolis: IEEE Service Center,2003 :6-13. 被引量:1
  • 2CHUNG Chan-jin, REYNOLDS R G. A testbed for solving optimiza-tion problems using cultural algorithms [ C] //Proc of the 4 th AnnualConference on Evolutionary Programming. Cambridge, Massachu-setts :MIT Press,1996:225-236. 被引量:1
  • 3CHUNG Chan-jin,REYNOLDS R G. CAEP : an evolution-based toolfor real-valued function optimization using cultural algorithms [ J].Journal on Artificial Intelligence Tools,1998,7(3) :239-292. 被引量:1
  • 4DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Enginee-ring,2000,186(2-4) :311-338. 被引量:1
  • 5STORN H,PRICE K. Differential evolution-a simple and efficientadaptive scheme for global optimization over continuous spaces[ R].[S. 1.] :International Computer Science Institute, 1995. 被引量:1
  • 6张敏辉.复形法粒子群优化算法研究[J].计算机应用研究,2012,29(2):463-464. 被引量:7
  • 7李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1259
  • 8刘常昱,李德毅,潘莉莉.基于云模型的不确定性知识表示[J].计算机工程与应用,2004,40(2):32-35. 被引量:132
  • 9李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:903
  • 10RUNARSSON T P, YAO X. Stochastic ranking for constrained evolu-tionary optimization[ J]. IEEE Trans on Evolutionary Computa-tion,2000,4(3) :284-294. 被引量:1

二级参考文献39

  • 1李德毅.发现状态空间理论[J].小型微型计算机系统,1994,15(11):1-6. 被引量:25
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1259
  • 3公茂果,焦李成,杜海峰,马文萍.用于约束优化的人工免疫响应进化策略[J].计算机学报,2007,30(1):37-47. 被引量:16
  • 4刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 5Price K V. An Introduction to Differential Evolution [ M]. London: McGraw-Hill, 1999: 79-108. 被引量:1
  • 6Ujjwal M, Indrajit S. Modified Differential Evolution based Fuzzy Clustering for Pixel Classification in Remote Sensing I Imagery [J]. Pattern Recognition, 2009, 42(9): 2135-2149. 被引量:1
  • 7Mezura M E, Coello C A C, Morales E I. Simple Feasibility Rules and Differential Evolution for Constrained Optimization[ C]// Lecture Notes in Computer Science. Berlin: Springer, 2004: 707-716. 被引量:1
  • 8Wang Y, Cai Z X, Guo G Q, et al. Multi-objective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems [ J]. IEEE Trans on Systems, Man, and Cybernetics (B), 2007, 37(3):560-575. 被引量:1
  • 9Coello C A. Treating Constraints as Objectives for Single-objective Evolutionary Optimization [ J]. Engineering Optimization, 2000, 32(3): 275-308. 被引量:1
  • 10Coello C A C. Theoretical and Numerical Constraint Handling Techniques used with Evolutionary Algorithms: A Survey of the State of the Art [ J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11-12): 1245-1287. 被引量:1

共引文献1933

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部