期刊文献+

基于均值-方差模型的Relief特征选择优化算法 被引量:7

A Novel Relief Feature Selection Algorithm Based on Mean-Variance Model
下载PDF
导出
摘要 Relief是公认的效果较好的filter式特征评估方法,但存在特征权值随样本波动的问题,导致识别准确率的下降。提出了一种基于均值-方差模型的特征权值优化算法,采用样本区分能力的平均贡献值的期望和组合贡献值的波动作为特征评估的依据,使得特征选择的结果更加稳定与准确。基于实地采集的地面运动目标的震动信号进行特征选择与分类学习实验,结果表明,该算法得到的特征子集比Relief具有更好的目标区分能力。 Relief is a feature evaluation method which performs well, while the weight of feature could fluctuate with the samples, which lead to poor recognition accuracy. To solve this problem, a novel feature selection algorithm based on Mean-Variance model is presented. It takes both the mean and the variance into account as the criterion of feature evaluation, which makes the result more stable and accurate. Based on real seismic signals of ground targets, experiment results indicate that the subsets of feature generated by proposed algorithm have better performance.
出处 《系统仿真技术》 2013年第3期224-228,共5页 System Simulation Technology
基金 国家科技重大专项资助项目(2010ZX03006-004) 国家重点基础研究发展计划资助项目(2011CB302906)
关键词 特征选择 均值-方差模型 RELIEF算法 震动信号 feature selection mean-variance model Relief algorithm seismic signals
  • 相关文献

参考文献13

  • 1Antonio Arauzo-Azofra,Jose Luis Aznarte,Benitez Jose M.Empirical study of feature selection methods based on individual feature evaluation for classification problems[J].Expert System with Applications,2011,38 (7):8170-8177. 被引量:1
  • 2杨艺,韩德强,韩崇昭.基于排序融合的特征选择[J].控制与决策,2011,26(3):397-401. 被引量:13
  • 3HU Qinghua,CHEN Xunjian,ZHANG Lei,et al.Feature evaluation and selection based on neighborhood soft margin[J].Neurocomputing,2010,73:2114-2124. 被引量:1
  • 4张丽新,王家廞,赵雁南,杨泽红.基于Relief的组合式特征选择[J].复旦学报(自然科学版),2004,43(5):893-898. 被引量:44
  • 5Kononenko I.Estimating attributes:analysis andextensions of relief[C] // Proceedings of Sixth Europeanconference on Machine Learning.[s.l.] :MIT Press,1994:171-182. 被引量:1
  • 6蒋玉娇,王晓丹,王文军,毕凯.一种基于PCA和ReliefF的特征选择方法[J].计算机工程与应用,2010,46(26):170-172. 被引量:25
  • 7Kira K,Rendell L A.The feature selection problem:traditional methods and a new algorithm[C] //Proceedings of the Ninth National Conference on Artificial Intelligence.[s.l.] :MIT Press,1992:129-134. 被引量:1
  • 8Marko R S,Igor K.Theoretical and empirical analysis of Relief and ReliefF[J].Machine Learning Journal,2003,53(1-2):23-69. 被引量:1
  • 9苏映雪,付耀文,黎湘.一种基于ReliefF评估和互补系数的特征选择算法[J].光电与控制,2007,14(3):12-15. 被引量:1
  • 10张丽新..高维数据的特征选择及基于特征选择的集成学习研究[D].清华大学,2004:

二级参考文献33

  • 1张丽新,王家廞,赵雁南,杨泽红.基于Relief的组合式特征选择[J].复旦学报(自然科学版),2004,43(5):893-898. 被引量:44
  • 2Mao K Z.Fast ortlaogonal forward selection algorithm for feature subset selection[J].IEEE Trans Neural Networks, 2002, 13 (5) : 1218-1224. 被引量:1
  • 3Wei Hua-liang, Billings S A.Feature subset selection and ranking for data dimensionality reduction[J].IEEE Trans Pattern Analysis and Machine Intelligence, 2007,29 ( 1 ) : 162-166. 被引量:1
  • 4Liu Y,Zheng Y F.FS SFS:A novel feature selection method for support vector machines[J].Pattem Recognition,2006,39: 1333-1345. 被引量:1
  • 5Jain A K,Duin R, Mao J C.Statistical pattern recognition a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 1 ) : 4-37. 被引量:1
  • 6Martin-Bautista M J, Vila M A.A survey of genetic feature selection in mining issues[C]//Proceeding of the 1999 Congress on Evolutionary Computation.NJ:IEEE Press,1999:13-23. 被引量:1
  • 7Kira K, Rendell L.The feature selection problem: Traditional methods and a new algorithm[C]//Proceedings of the Ninth National Conference on Artificial Intelligence.New Orleans: AAAI Press, 1992 : 129-134. 被引量:1
  • 8Kononenko I.Estimation attributes: Analysis and extensions of RELIEF[C]//Bergadano F, De Raedt L.Proceedings of the 1994 European Conference on Machine Learning.Catania,Italy:Springer Verlag, 1994:171-182. 被引量:1
  • 9Vapnik V N.Statistical learning theory[M].[S.l.]. John Wiley & Sons, 1998. 被引量:1
  • 10Liu H, Yu L. Toward integrating feature selection algorithms for classification and clustering[J]. IEEE Transon Knowledge and Data Engineering, 2005, 17(3): 491- 502. 被引量:1

共引文献80

同被引文献39

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部