期刊文献+

磁性材料成型烧结生产调度优化方法及应用 被引量:1

Magnetic material molding sintering production scheduling optimization method and its application
下载PDF
导出
摘要 建立以最小化提前和拖期时间、最小化炉重偏差为目标的混合整数线性规划模型,解决磁性材料成型-烧结两阶段生产调度问题.提出一种混合粒子群优化算法(HPSO)进行模型的求解,该算法采用基于订单的编码方式.针对粒子群算法易陷入局部最优,在迭代过程中引入模拟退火思想.改进粒子群算法的全局极值和个体极值选取方式,使算法尽快收敛到非劣最优解.生产现场实际数据仿真结果表明:该混合粒子群算法无论在求解精度,还是求解速度上均优于普通粒子群算法和遗传算法. A mixed integer linear programming model was built to solve molding and sintering two stage production scheduling problem of magnetic material with the optimization objectives of minimizing earliness and tardiness time and minimizing furnace heavy deviation. A hybrid particle swarm optimization (HPSO) algorithm was proposed to solve the model. Encoding based on the order was adopted in the algorithm. For the particle swarm optimization (PSO) algorithm is easy to fall into local minima, simulated annealing was introduced in the iteration process. In order to make the algorithm to converge to the non-inferior opti- mal solution as soon as possible, the selection mode of PSO's global extreme and individual extreme was improved. Simulation results with actual data of production field showed that the proposed hybrid particle swarm algorithm is better than the general particle swarm algorithm and genetic algorithm (GA) either in solving precision or speed.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第9期1517-1523,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61174187) 教育部基本科研业务费资助项目(N110208001) 东北大学启动基金资助项目(29321006)
关键词 多目标优化 粒子群优化算法 模拟退火 生产调度 磁性材料 multi-objective optimization particle swarm optimization algorithm simulated annealing pro- duction seheduling~ magnetic materials
  • 相关文献

参考文献14

  • 1MANSOURI S A. A multi-objective genetic algorithm for mixed-model sequencing on JIT assembly lines [J]. European Journal of Operation Research, 2005, 167(3) : 696 - 716. 被引量:1
  • 2TAVAKKOLI-MOGHADDAM R, RAHIMI-VAHED A R. Multi-criteria sequencing problem for a mixed- model assembly line in a JIT production system [J]. Applied Mathematics and Computation, 2006, 181 (2) : 1471 - 1481. 被引量:1
  • 3HE Y, HUI C W. Genetic algorithm for large-size multi-stage batch plant scheduling [J]. Chemical Engi- neering Science, 2007, 62(5) : 1504 - 1523. 被引量:1
  • 4FAHIMI-VAHED A R, MIRGHORHANI S M, RAB- BANI M. A new particle swarm algorithm for a multi- objective mixed-model assembly line sequencing problem [J]. Soft Computing: A Fusion of Foundations, Method- ologies and Applications, 2007, 11(10) :997 - 1012. 被引量:1
  • 5董巧英,阚树林,桂元坤,蔡纯之.基于改进离散微粒群优化算法的混流装配线多目标排序[J].系统仿真学报,2009,21(22):7103-7108. 被引量:12
  • 6刘炜琪,刘琼,张超勇,邵新宇.基于混合粒子群算法求解多目标混流装配线排序[J].计算机集成制造系统,2011,17(12):2590-2598. 被引量:19
  • 7张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:224
  • 8KENNED Y J, EBERHART R C. Particle swarm opti- mization [C]//Proe of IEEE International Conference on Neural Networks. NewYork:IEEE, 1995 : 1942 - 1948. 被引量:1
  • 9KENNEDY J, EBERHART R. Particle swarm optimi- zation[C] //IEEE International Conference on Neural Networks. Perth, Australia : IEEE, 1995. 被引量:1
  • 10EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]// Proc of the 6th Interna- tional Symposium on Micro Machine and Human Sci- ence. Piscataway, NJ : IEEE Service Center, 1995.. 139 - 143. 被引量:1

二级参考文献76

共引文献263

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部