期刊文献+

一类复杂动力学网络的滑模控制混沌同步 被引量:1

Chaos Synchronization of a Class of Complex Networks on Sliding Mode Control
原文传递
导出
摘要 滑模控制作为一种重要的鲁棒控制策略,得到广泛的应用,运用滑模控制实现多个具有相互关联的混沌系统的同步问题还鲜有报道。本文利用滑模控制方法研究了一类复杂动力学网络的同步控制问题,该系统的驱动系统为i=Cxi+1+f(xi+1),n=g(x1,x2,…,xn),而响应系统为j i=Cxj i+1+f(xj i+1),j n=g(xj1,xj2,…,xj n)+ξj+uj,结果表明选取适当的滑模面和控制律,该混沌系统是同步的。文章基于Lyapunov稳定性理论,设计了网络滑模面以及控制输入,如果选取适当的可调参数,可得到V·<0,从而在滑模控制方法下多个混沌系统构成的复杂动力学网络是混沌同步的,仿真算例说明了该方法的有效性。 Sliding mode control get comprehensive application as important robust control strategy. The sychronation problem is scarcely reported for multiple synchrophic chaos systems by using sliding mode approach. Chaos synchronization of a class of com- plex networks on sliding mode control is studied in the paper. The drive systems is systems as following x·i=Cxi+1+f(xi+1),x·n=g(x1,x2,…,xn), and systems x·ji=Cxji+1+f(xji+1),x·jn=g(xj1,xj2,…,xjn)+ξj+ujas it's response systems. The research results illustrated that by choosing appropriate sliding mode surface and control law, systems is chaos synchroniziation. The effectiveness of the method is analyzed based on Lyapunov stability theory. The last results proved that complex networks are chaos synchronized selecting proper adjustable parameter. It can get that the derivative of V is less then zero. So the complex dy- namics network comprised of multiple synchrophic chaos systems is synchronized using sliding mode approach. The simulation ex- ample proved that the approach is effective.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期56-58,共3页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.51072184) 国家自然科学基金数学天元基金(No.11226337) 河南省科技厅基础与前沿技术研究计划项目(No.122300410390) 郑州航空工业管理学院青年基金(No.2012113004)
关键词 滑模控制 混沌同步 复杂网络 sliding control chaos synchronization complex networks
  • 相关文献

参考文献8

二级参考文献80

共引文献59

同被引文献15

  • 1L M Pecora, T L Carroll. Synchronization of chaotic systems [ J ]. Physical Review Letters. 1990,64 ( 8 ) : 821 - 824. 被引量:1
  • 2H Y Du, P Shi, N Ltl. Function projective synchronization in com- plex dynamical networks with time delay via hybrid feedback con- trol[ J ]. Nonlinear Analysis: Real World Applications, 2013,14 : 1182 - 1190. 被引量:1
  • 3X J Wu, H Wang, H T Lu. Modified generalized projective synchro- nization of a new fractional - order hyperchaotic system and its ap- plication to secure communication[ J]. Nonlinear Analysis : Real World Applications,2012,13 : 1441 - 1450. 被引量:1
  • 4K S Sudheer, M Sabir. Adaptive modified function projective syn- chronization between hyperehaotic Lorenz system and hyperchaotic Lu system with uncertain parameters[J]. Physics Letters A,2009, 373:3743 - 3748. 被引量:1
  • 5G Y Fu. Robust adaptive modified function projective synchroniza- tion of different hyperchaotic systems subject to external disturbance [ J ]. Commun Nonlinear Sci Numer Simulat, 2012, 17:2602 - 2608. 被引量:1
  • 6P Zhou,F Kuang, Y M Cheng. Generalized projective synchroni- zation for fractional order chaotic systems [ J ]. Chin. J. Phys. , 2010,48:49 - 56. 被引量:1
  • 7Ivo Petrtras. Fractional - Order Nonlinear systems[M]. Bei Jing, High Education Press ,2011:9 - 12 . 被引量:1
  • 8I Grigorenko, E Grigorenko. Chaotic Dynamics of The Fractional Lorenz System[J]. Phys. Rev. Lett. ,2003,91:34101. 被引量:1
  • 9Z Wang,X Huang,G D Shi. Analysis of nonlinear dynamics and chaos in a fractional order filaancial system with time delay[J]. Com- puters and Mathematics with Applications ,2011,62:1531 - 1539. 被引量:1
  • 10刘丁,闫晓妹.基于滑模控制实现分数阶混沌系统的投影同步[J].物理学报,2009,58(6):3747-3752. 被引量:15

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部