期刊文献+

简化型PCNN的混合噪声图像滤波算法研究 被引量:6

The Research of Hybrid Noise Filtering for Images Based on Pulse Coupled Neural Network
下载PDF
导出
摘要 针对脉冲噪声和高斯噪声构成混合噪声的特点,提出了一种基于简化型脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)滤波算法,利用了简化模型的几个技术特性,适当的选取参数,并在算法中结合了形态学方法、中值滤波和维纳滤波,该算法相对于均值滤波和中值滤波算法来说具有更好的抑制混合噪声干扰的能力,能较好地保持图像的边缘和细节信息。通过大量实验证实,应用简化型PCNN滤波算法对滤除灰度图像所受混合噪声的效果较好。在与其他算法的比较中,该算法优于传统的滤波算法,不但能有效地滤除混合噪声,并且计算量适中,具有较好的实时性,同时随着图像受混合噪声污染程度的增大,优势更加明显。 To the speciality of mixed noise constituted by pulse noise and Gauss noise, we present a comprehensive algorithm in this text, which is based on the simplified PCNN model, utilizing several technique specialities of the model, selecting parameters properly, and combining with mathematical morphology method, median filtering and wiener filtering. This method performs better than average filters and median filters on hybrid noise reduction while retaining edges and detail information of the image. Experiments show that the effect of eliminating grey image mixed noise which applying the simplified PCNN eliminating algorithm proposed in this paper is good. This algorithm can show a big advantage when in the comparison with other algorithms. This algorithm not only can effectively filter hy- brid noise but also can excel in real-time tasks because of its reduced computation complexity. With the increase of the image populated by blends noise, the advantage is obvious.
出处 《控制工程》 CSCD 北大核心 2013年第5期829-832,共4页 Control Engineering of China
基金 辽宁省教育厅资助项目(2010095)
关键词 脉冲耦合神经网络 混合噪声 滤波 PCNN, hybrid noise, filtration
  • 相关文献

参考文献11

二级参考文献53

  • 1王红梅,张科,李言俊.一种基于PCNN的图像分割方法[J].光电工程,2005,32(5):93-96. 被引量:13
  • 2章毓晋.图像工程(上)--图像处理和分析[M].北京:清华大学出版社,2000.1-46,81-106. 被引量:2
  • 3[4]Sun T, Neuvo Y. Detail-preserving median based filters in image processing. Pattern Recognition Letter,1994, 15:341~347 被引量:1
  • 4[5]Florencio D, Schafer R. Decision-based median filter using local signal statistics. Proc SPIE Int Symp Visual Communications Image Processing, Chicago, Sept. 1994 被引量:1
  • 5[6]Eng How-Lung, Ma Kai-Kuang. Noise Adaptive Soft-Switching Median Filter, IEEE Trans on Image Processing, 2001, 10(2): 242~251 被引量:1
  • 6[7]Eckhorn R, Reiboeck H J, Arndt M, et al. A neural networks for feature linking via synchronous activity:Results from cat visual cortex and from simulations. In: Cotterill R M J, ed. Models of Brain Function,Cambridge: Cambridge Univ Press, 1989 被引量:1
  • 7[8]Eckhorn P. Neural Mechanisms of Scene Segmentation: Recordings from the Visual Cortex Suggest Basic Circuits or Linking Field Models. IEEE Trans Neural Networks, 1999, 10(3): 464~479 被引量:1
  • 8[9]Broussard R P, Rogers S K, Oxley M E, et al. Physiologically Motivated Image Fusion for Object Detection using a Pulse Coupled Neural Network. IEEE Trans Neural Networks, 1999, 10(3): 554~563 被引量:1
  • 9[10]Kinser J M. Foveation by a Pulse-Coupled Neural Net work. IEEE Trans Neural Networks, 1999, 10(3):621~625 被引量:1
  • 10[11]Caufield H J, Kinser J M. Finding the Shortest Path in the Shortest Time Using PCN. IEEE Trans on Neural Networks, 1999, 10(3): 604~606 被引量:1

共引文献94

同被引文献51

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部