期刊文献+

BOUNDEDNESS OF FRACTIONAL MAXIMAL OPERATOR AND THEIR HIGHER ORDER COMMUTATORS IN GENERALIZED MORREY SPACES ON CARNOT GROUPS 被引量:4

BOUNDEDNESS OF FRACTIONAL MAXIMAL OPERATOR AND THEIR HIGHER ORDER COMMUTATORS IN GENERALIZED MORREY SPACES ON CARNOT GROUPS
下载PDF
导出
摘要 In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimension of G. We find the conditions on the pair (φ1, φ2) which ensures the boundedness of the operator Ms from one generalized Morrey space Mp,φ1 (G) to another Mq,φ2 (G), 1. 〈 p ≤q 〈 ∞. 1/p - 1/q = α/Q, and from the space M1,φ1 (G) to the weak space Wq,φ2 (G), 1 〈 q 〈 ∞, 1 - 1/q = α/Q. Also find conditions on the φ which ensure the Adams type boundedness of the Ms from M α (G) from Mp,φ^1/p(G)to Mq,φ^1/q(G) for 1 〈p〈q〈∞ and fromM1,φ(G) toWMq,φ^1/q(G)for 1〈q〈∞. In the case b ∈ BMO(G) and 1 〈 p 〈 q 〈 ∞, find the sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of the kth-order commutator operator Mb,α,k from Mp,φ1 (G) to Mq,φ2(G) with 1/p - 1/q = α/Q. Also find the sufficient conditions on the φ which ensures the boundedness of the operator Mb,α,k from Mp,φ^1/p(G) tom Mp,φ^1/p (G) for 1 〈p〈q〈∞. In all the cases the conditions for the boundedness of Mα are given it terms of supremaltype inequalities on (φ1, φ2) and φ , which do not assume any assumption on monotonicity of (φ1, φ2) and φ in r. As applications we consider the SchrSdinger operator -△G + V on G, where the nonnegative potential V belongs to the reverse Holder class B∞(G). The MB,φ1 - Mq,φ2 estimates for the operators V^γ(-△G + V)^-β and V^γ△↓G(-△G + V)^-β are obtained. In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimension of G. We find the conditions on the pair (φ1, φ2) which ensures the boundedness of the operator Ms from one generalized Morrey space Mp,φ1 (G) to another Mq,φ2 (G), 1. 〈 p ≤q 〈 ∞. 1/p - 1/q = α/Q, and from the space M1,φ1 (G) to the weak space Wq,φ2 (G), 1 〈 q 〈 ∞, 1 - 1/q = α/Q. Also find conditions on the φ which ensure the Adams type boundedness of the Ms from M α (G) from Mp,φ^1/p(G)to Mq,φ^1/q(G) for 1 〈p〈q〈∞ and fromM1,φ(G) toWMq,φ^1/q(G)for 1〈q〈∞. In the case b ∈ BMO(G) and 1 〈 p 〈 q 〈 ∞, find the sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of the kth-order commutator operator Mb,α,k from Mp,φ1 (G) to Mq,φ2(G) with 1/p - 1/q = α/Q. Also find the sufficient conditions on the φ which ensures the boundedness of the operator Mb,α,k from Mp,φ^1/p(G) tom Mp,φ^1/p (G) for 1 〈p〈q〈∞. In all the cases the conditions for the boundedness of Mα are given it terms of supremaltype inequalities on (φ1, φ2) and φ , which do not assume any assumption on monotonicity of (φ1, φ2) and φ in r. As applications we consider the SchrSdinger operator -△G + V on G, where the nonnegative potential V belongs to the reverse Holder class B∞(G). The MB,φ1 - Mq,φ2 estimates for the operators V^γ(-△G + V)^-β and V^γ△↓G(-△G + V)^-β are obtained.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2013年第5期1329-1346,共18页 数学物理学报(B辑英文版)
基金 partially supported by the grant of Ahi Evran University Scientific Research Projects(FEN 4001.12.0018) partially supported by the grant of Ahi Evran University Scientific Research Projects(FEN 4001.12.0019) by the grant of Science Development Foundation under the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1 partially supported by the Scientific and Technological Research Council of Turkey(TUBITAK Project No:110T695)
关键词 Carnot group fractional maximal function generalized Morrey space Schrodinger operator BMO space Carnot group fractional maximal function generalized Morrey space Schrodinger operator BMO space
  • 相关文献

参考文献29

  • 1Adams D R. A note on Riesz potentials. Duke Math, 1975, 42:765-778. 被引量:1
  • 2Akbulut A, Guliyev V S, Mustafayev R. On the Boundedness of the maximal operator and singular integral operators in generalized Morrey spaces. Math Bohem, 2012, 137(1): 2-43. 被引量:1
  • 3Alphonse A M. An end point estimate for maximal commutators. J Fourier Anal Appl, 2000, 6(4): 449 -456. 被引量:1
  • 4Burenkov V, Gogatishvili A, Guliyev V S, Mustafayev R. Boundedness of the fractional maximal operator in local Morrey-type spaces. Complex Var Elliptic Equ, 2010, 55(8 10): 739-758. 被引量:1
  • 5Fefferman C. The uncertainty principle. Bull Amer Math Soc, 1983, 9:129 -206. 被引量:1
  • 6Folland G B. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark Mat, 1975, 13: 161-207. 被引量:1
  • 7Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Math Notes, 28. Princeton: Princeton Univ Press, 1982. 被引量:1
  • 8Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton, N J: Princeton Univ Press, 1983. 被引量:1
  • 9Guliyev V S. Integral operators on function spaces on the homogeneous groups and on domains in (in Russian) [D]. Moscow: Mat Inst Steklova, 1994:1- 329. 被引量:1
  • 10Guliyev V S. Function spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups. Some Applications (Russian). Baku: ELM, 1996. 被引量:1

同被引文献13

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部