期刊文献+

基于环境感知的多路径路由算法 被引量:1

Environment-aware multiple-path routing algorithm
下载PDF
导出
摘要 认知网络能够提高网络端到端的性能,确保服务质量(QoS)要求。而目前普遍使用的路由算法不具备网络认知能力。针对这一问题,提出一种具有认知能力的负载均衡多路径路由算法,该算法结合了Q学习算法和蚁群算法各自的优点,通过蚁群算法完成路径的建立和维护,Q学习算法实现拥塞规避和负载均衡。使用OPNET仿真比较,表明该算法在时延、带宽利用方面均具有较好的性能。 Cognitive network can improve the end-to-end performance of the network, and ensure QoS (Quality of Service) requirements. The existing routing algorithm does not have cognitive ability. To solve this problem, a multi-path routing algorithm of cognitiveload balancing was proposed, which combined the advantages of Q-learning algorithm and ant algorithm, to establish and maintain the route through ant algorithm, and to achieve congestion avoidance and load balancing by Q-learning algorithm. The simulation contrast with OPNET shows that the algorithm is valid and effective at controlling packet loss ratio, delay and bandwidth utilization.
作者 林沛 胡建军
出处 《计算机应用》 CSCD 北大核心 2013年第10期2750-2752,共3页 journal of Computer Applications
基金 甘肃省高等学校研究生导师科研项目(1215-04) 甘肃联合大学科研能力提升计划骨干项目(2012GGTS01)
关键词 多路径路由 认知网络 Q学习算法 蚁群算法 拥塞避免 multiple-path routing cognitive networks Q-learning algorithm ant colony algorithm congestion avoidance
  • 相关文献

参考文献11

  • 1THOMAS R W, DASILVA L A, MACKENZIE A B. Cognitive net- works[ C]// Proceedings of IEEE DySPAN 2005. Piscataway: IEEE, 2005: 352 - 360. 被引量:1
  • 2GEORGIA S. The cognitive packet network: A survey[ J]. Computer Jouranl, 2010, 53(3) : 268 - 279. 被引量:1
  • 3LAURENCE A H. Reduced complexity algorithm for cognitive pack- et network routers[ J]. Computer Communications, 2008, 31 (16) : 3822 - 3830. 被引量:1
  • 4DILIP S. Transport layer protocols for cognitive networks[ C]//Pro- ceedings of 2010 IEEE Conference on Computer Communications Workshops. Piseataway: IEEE, 2010:1 -6. 被引量:1
  • 5林国辉,马正新,王勇前,曹志刚.基于蚂蚁算法的拥塞规避路由算法[J].清华大学学报(自然科学版),2003,43(1):1-4. 被引量:24
  • 6王传臣,张润彤,李丹丹,曹峰.认知网络中的拥塞规避多径路由算法[J].电子学报,2011,39(8):1858-1863. 被引量:7
  • 7WATKINS C, DAYAN P. Q-learning[ J]. Machine Learning, 1992, 8 (3/4) : 279 - 292. 被引量:1
  • 8LEE M, MARCONETY D, YE X H, et al. Cognitive network man- agement with reinforcement learning for wireless mesh networks [ C]//Proceeding of 7th IEEE International Workshop - IP Opera- tions and Management. Piscataway: IEEE, 2007:168 - 179. 被引量:1
  • 9乐天助..认知网络路由技术研究[D].西安电子科技大学,2011:
  • 10PACUT A, GADOMSKA M, IGIELSKIJ A. Ant routing vs. Q-rou- ting in telecommunication networks[ C]// Proceedings of the 20th European Conference on Modelling and Simulation. [ S. l. ] : Europe- an Council for Modelling and Simulation, 2006: 22. 被引量:1

二级参考文献20

  • 1章洋,范植华,何晓新,徐帆江,王宇心.移动自组网络中多径路由的匿名安全[J].电子学报,2005,33(11):2022-2030. 被引量:14
  • 2Thomas R W, DaSilva L A, Mackenzie A B. Cognitive networks[ A]. Proc of IEEE DySPAN 2005 [ C ]. Maryland, USA, 2005. 352 - 360. 被引量:1
  • 3SakeUari, Georgia. The cognitive packet network: A survey[ J ]. Computer Jouranl,2010,53(3) :268 - 279. 被引量:1
  • 4Hey Laurence A. Reduced complexity algorithm for cognitive packet network routers [J]. Computer Communications, 2008, 31(16) :3822 - 3830. 被引量:1
  • 5Sarkar Dilip. Transport layer protocols for cognitive networks [ A]. IEEE Conference on Computer Communications Workshops[C]. San Diego, CA, United states,2010.1 - 6. 被引量:1
  • 6Strobbe M, Verstraete V. Implementation and evaluation of AntNet, a distributed shortest-path algorithm[ J]. IEEE, 2005, 17(20) :320 - 325. 被引量:1
  • 7Bonabeau E, Theraulaz G. Swarm smarts[ J]. Scientific American,2000,6(2) :74 - 79. 被引量:1
  • 8Floyd S, Jacobson V. Random early detection gateways for congestion avoidance [ J ]. IEEE/ACM Trans Networking, 1993,1(2) :397 - 413. 被引量:1
  • 9Schoonderwoerd R,Holland O,Bruten J,et al. Ant-based load balancing in telecommunications networks [J]. Adaptive Behavior,1996,5(2): 169-207. 被引量:1
  • 10Guoying L,Zemin L,Zheng Z. Multicast routing based on ant algorithm for delay-bounded and load balancing traffic [EB/OL]. http://iel.ihs.com,2000. 被引量:1

共引文献28

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部