期刊文献+

含水层非线性流研究进展 被引量:2

Progress of study on nonlinear flow in aquifer
下载PDF
导出
摘要 通过综述非线性流研究的现有成果,指出了研究范围(时空尺度)、建模过程和求解方法是现状研究的难点,探讨了含水层非线性流的未来研究方向。 Through reviewing the existing results of the study on the nonlinear flow, it is pointed out that the study area( spatial and temporal scale) , the modeling process and the solving method are the most difficuh points in the study at present; mean- while, the direction of the future study on the nonlinear flow in aquifer is discussed as well.
出处 《水利水电技术》 CSCD 北大核心 2013年第9期119-122,共4页 Water Resources and Hydropower Engineering
基金 水利部公益性行业科研专项(201201008)
关键词 非线性流 达西定律 Izbash方程 Forchheimer方程 non-linear flow Darcy' s law Izbash equation Forchheimer equation
  • 相关文献

参考文献22

  • 1Zhang Wen, Guanhua Huang, Hongbin Zhan, et al. Two-region non-Darcian flow toward a well in a confined aquifer[ J]. Advances in Water Resources, 2008 ( 31 ) : 818- 827. 被引量:1
  • 2Wattenbarger R A, Ramey H J. fractured gas wells[J]. J. Pet. Well test interpretation of vertically Tech. AIME. , 1969(246) : 625-632. 被引量:1
  • 3Basak P. Non-penetrating well in a semi-infinite medium with non- linear flow[J]. J. Hydrol., 1977(33) : 375-382. 被引量:1
  • 4Tartakovsky D M, Neumml S P. Transient flow in bounded randomly heterogeneous domains 1. Exact conditional moment equations and recursive approximations[ J]. Water Resources. , 1998, 34( 1 ) : 1- 12. 被引量:1
  • 5Qian J Z, Zhan H, Zhao W, et al. Experimental study of turbulent unconfined groundwater flow in a single fracture [ J ]. J. Hydrol., 2005(311 ) : 134-142. 被引量:1
  • 6李健,黄冠华,文章,詹红兵.两种不同粒径石英砂中非达西流动的实验研究[J].水利学报,2008,39(6):726-732. 被引量:9
  • 7Ma H, Ruth D. The Microscopic Analysis of High Forchheimer Number Flow in Porous Media [ J ]. Transp. Porous Med. , 1993 (13) : 139-160. 被引量:1
  • 8Moutsopoulos K N, Tsihrintzis V A. Approximate analytical solutions of the Forchheimer equation[ J]. J. Hydrol. , 2005, 309 : 93-103. 被引量:1
  • 9Sidiropoulou M G, Moutsopoulos K N, Tsihrintzis V A. Determina- tion of Forchheimer equation coefficients a and b [ J ]. Hydrolog. Process. , 2007(21 ): 534-554. 被引量:1
  • 10李健..多孔介质中非达西流动的实验研究[D].中国农业大学,2007:

二级参考文献18

  • 1王鹏举.考虑非达西流情况下地下水向集水建筑物运动的非稳定理论的研究[J].灌溉排水,1996,15(4):1-9. 被引量:5
  • 2Scheidegger A E. The physics of flow through porous media[ M]. Toronto, Canada: University of Toronto Press, 1963. 被引量:1
  • 3Wattenbarger R A, Ramey H J. Well test interpretation of vertically fractured gas wells[J]. J. Pet. Tech. AIME., 1969, 246: 625- 632. 被引量:1
  • 4Basak P. Steady Non-Dareian seepage through embankments[ J]. J.Irri. Drain. Div., 1976, 102:435- 443. 被引量:1
  • 5Izbash S. Ofiltracii kropnozernstom materiale[J] .Leningrad, USSR, 1931. 被引量:1
  • 6Bordier C, Zimmer D. Drainage equations and non-Darcian modeling in coars porous media or geosynthetic macterials[J]. J. Hydrol. ,2000,228:174 - 187. 被引量:1
  • 7Forchheimer P H. Wasserbewegung druch boden, zeitschrift des Bereines deutscher ingenierre[ J]. 1901, 49:1736- 1749. 被引量:1
  • 8Venkataraman P, Rao P R M. Validation of Forchheimer's law for flow through porous media with converging boundaries [J].J. Hydr. Eng., 2000,126:63-71. 被引量:1
  • 9Moutsopoulos K N, Tsihrintzis V A. Approximate analytical solutions of the Forchheimer equation[ J]. J. Hydrol. , 2005, 309:93 - 103. 被引量:1
  • 10Ma H, Ruth D. The microscopic analysis of high Forchheimer number flow in porous media[J]. Transport Porous Med., 1993,13 : 139 - 160. 被引量:1

共引文献10

同被引文献46

引证文献2

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部