期刊文献+

二维弹性力学边界条件反识别TSVD正则化法 被引量:4

Inverse identification of 2-D elasticity boundary conditions by using TSVD regularization method
下载PDF
导出
摘要 针对二维各向同性弹性力学Cauchy问题,文章采用线性单元对边界积分方程进行离散,再引入已知的边界条件,得到包含所有待求边界条件信息的线性病态方程组。采用截断奇异值分解正则化技术求解该病态方程组,并使用L曲线法选择最优正则化参数,即奇异值截断位置,从而得到方程组的解。通过数值算例对求得的边界条件数值解与解析解进行比较,并进行误差分析,以表明截断奇异值分解算法的有效性和稳定性。通过减少已知数据中的随机偏差和增加边界单元密度可提高求解的精确度。 The boundary element method(BEM) is developed to analyze the Cauehy boundary condition inverse problems in 2-D isotropic elasticity. The boundary integral equation is diseretized by a set of linear elements, and after the given boundary conditions have been introduced, the ill-posed linear system equations with all the unknown boundary conditions can be given. Truncated singular value decomposition(TSVD) technique is applied to solving the equations. L-curve method is proposed to select the regularization parameter, i.e. the optimal truncation number, and then the solution of the linear system equations can be obtained. Numerical examples are shown to demonstrate the effective- ness and stability of the TSVD algorithm by the comparison of the obtained numerical solution and an- alytical solution. The regularization errors are also analyzed. The accuracy of the solution can be im- proved by reducing the amount of noise added into the known data and refining the mesh size.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第9期1076-1081,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(11072073) 教育部留学回国人员科研启动基金资助项目(2009jylh0110) 安徽高校省级自然科学研究重点资助项目(KJ2008A041)
关键词 边界条件 反问题 边界元法 截断奇异值分解 L曲线法 boundary condition inverse problem boundary element method(BEM) truncated singu- lar value deeomposition(TSVD) Lcurve method
  • 相关文献

参考文献11

  • 1程长征,牛忠荣,周焕林,杨智勇.涂层结构中温度场的边界元法分析[J].合肥工业大学学报(自然科学版),2006,29(3):326-329. 被引量:7
  • 2程长征,牛忠荣,王远坤,葛大丽.赫兹压力下涂层构件的边界元法分析[J].合肥工业大学学报(自然科学版),2008,31(2):196-201. 被引量:2
  • 3Marin L,Lesnic D. Boundary element solution for theCauchy problem in linear elasticity using singular value de-composition [J], Computer Methods in Applied Mechanicsand Engineering,2002.191 (29/30) :3257-3270. 被引量:1
  • 4Hansen P C. Rank-deficient and discrete ill-posed problem:numerical aspects of linear inversion [M]. Philadelphia: SI-AM,1998:48~50. 被引量:1
  • 5Marin L, Lesnic D. Regularized boundary element solutionfor an inverse boundary value problem in linear elasticity[J]. Communications in Numerical Methods in Engineering,2002,18(11):817-825. 被引量:1
  • 6Yeih W C,Koya T,Mura T. An inverse problem in elastic-ity with partially overprescribed boundary conditions, partI: theoretical approach [J]. Transactions of the ASME Jour-nal of Applied Mechanics, 1993,60(3) : 595 — 600. 被引量:1
  • 7Koya T. Yeih W C,Mura T. An inverse problem in elastic-ity with partially overprescribed boundary conditions,partII: Numerical details [J]. Transactions of the ASME Journalof Applied Mechanics,1993,60(3) :601 —606. 被引量:1
  • 8Marin L,Elliott L, Ingham D B, et al. Boundary elementmethod for the Cauchy problem in linear elasticity [J]. En-gineering Analysis with Boundary Elements, 2001,25(9):783-793. 被引量:1
  • 9Ellabib A. Nachaoui A. An iterative approach to the solu-tion of an inverse problem in linear elasticity [J]. Mathe-matics and Computers in Simulation, 2008,77 (2/3):189-201.'. 被引量:1
  • 10Hansen P C. Analysis of discrete ill-posed problems bymeans of the L-Curve [J]. SIAM Review, 1992, 34 (4):561-580. 被引量:1

二级参考文献15

共引文献7

同被引文献28

  • 1周焕林,江伟,胡豪,牛忠荣.二维弹性力学边界条件反识别PCG正则化法[J].固体力学学报,2013,34(S1):288-293. 被引量:2
  • 2肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:科学出版社,2004. 被引量:2
  • 3程荣军,程玉民.带源参数的热传导反问题的无网格方法[J].物理学报,2007,56(10):5569-5574. 被引量:29
  • 4Zabaras N, Liu J C. An analysis of two-dimensional linear inverse heat transfer problem using an integral method number[J]. Heat Transfer, 1988,13 .. 527-533. 被引量:1
  • 5Delvare F,Cimeti6re A,Pons F. An iterative boundary ele ment method for Cauchy inverse problems [J]. Computa- tional Mechanics, 2002,28 : 291- 302. 被引量:1
  • 6Lesnic D, Elliott L, Ingham D B. An iterative boundary ele- ment method for solving numerically the Cauchy problem for the Laplace equation[J]. Engineering Analysis with Boundary Elements, 1997,2 .. 123- 133. 被引量:1
  • 7Marin L, Lesnic D. Boundary element solution for the Cauchy problem in linear elasticity using singular value de- composition[J]. Computer Methods in Applied Mechanics and Engineering, 2002,191 : 3257- 3270. 被引量:1
  • 8Hansen P C. Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion[M]. SIAM, Philadel- phia, 1998:83-88. 被引量:1
  • 9Hansen P C. Analysis of discrete ill-posed problems by means of the L-Curve [J]. SIAM Review, 1992, 34 (4):561-580. 被引量:1
  • 10Kim S* Kim M C. Kim K Y_ Non-iterative estimation oftemperature-dependent thermal conductivity without inter-nal measurements [J]. International Journal of Heat andMass Transfer, 2003,46( 10) : 1801 -1810. 被引量:1

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部