期刊文献+

支持向量机理论研究 被引量:1

Research on theory of support vector machines
下载PDF
导出
摘要 支持向量机(support vector machines,SVM)是一种基于小样本统计理论的机器学习方法,在解决非线性及高维模式识别中表现出明显的优势,是近年来机器学习领域的研究热点。文中介绍了支持向量机的原理,对经典的训练算法和一些新型的学习模型进行了阐述,最后指出所面临的问题和研究方向。 Support vector machines(SVM)is a new machine learning method based on the statistical theory of small sample, and it has the obvious advantage in solving nonlinear and high-dimensional pattern recognition. In recent years, SVM has become a hot research field of machine learning. This paper describes the principle of support vector machines, sums up the classic training algorithms of SVM and some new learning models detailedly, and finally points out some problems and research direction of support vector machines.
出处 《信息技术》 2013年第9期152-154,159,共4页 Information Technology
关键词 统计学习理论 支持向量机 GA—SVM GSVM RS—SVM statistical learning theory support vector machines GA-SVM GSVM RS-SVM
  • 相关文献

参考文献11

  • 1Vapnik V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2009. 被引量:9
  • 2Boser B E, Guyon I M, Yapnik V N. A training algorithm for opti- mal margin classifiers [ C ]//proceedings of the 5th annual ACM workshop on Computational Learning Theory. 1992:144 -152. 被引量:1
  • 3Osuna E, Freund R, Girosi F. Training support vector machines: An application to face detection[ C]// Proceedings CVPR' 97. 1997. 被引量:1
  • 4BOSER B E, GUYON I M,VAPNIK V N. A training algorithm for optimal margin classifiers [ M ]. Proceedings of The Fifth Annual Workshop on Computational Learning Theory. New York: ACM Press, 1992 : 144 - 152. 被引量:1
  • 5PLATI" J. Fast training of support vector machines using sequential minimal optimization [ M ]. Advances in Kernel Methods : Support Vector Learning. Cambridge, MA : The MIT Press, 1998. 被引量:1
  • 6陈果.基于遗传算法的支持向量机分类器模型参数优化[J].机械科学与技术,2007,26(3):347-350. 被引量:40
  • 7TANG Yu-chun, JIN Bo, ZHANG Yan-qing, et al. Granular support vector machines for medical binary classification problems[ C]. Pro-ceedings of the IEEE CIBIB. Piscataway, H J: IEEE Computationl In- telligence Society,2004:73 - 78. 被引量:1
  • 8王国胤..ROUGH集理论与知识获取[M],2001.
  • 9L/NGRAS P, BUTZ C. Rough Set Based 1 - v - 1 and 1 - v - r Ap- proaches to Support Vector Machine Multielassification[ J]. Informa- tion Sciences,2007 ( 177 ) :3782 - 3798. 被引量:1
  • 10韩虎,党建武,任恩恩.基于邻域粗糙集的支持向量机分类方法研究[J].计算机科学,2010,37(2):229-231. 被引量:16

二级参考文献30

  • 1张建明,曾建武,谢磊,王树青.基于粗糙集的支持向量机故障诊断[J].清华大学学报(自然科学版),2007,47(z2):1774-1777. 被引量:23
  • 2安金龙,王正欧.预抽取支持向量机的支持向量[J].计算机工程,2004,30(10):10-11. 被引量:10
  • 3李围正,王猛.支持向量机导论[M].北京:电子工业出版社,2005. 被引量:1
  • 4Shin H,Cho S. Fast pattern selection for support vector classifiers[J]. I.ecture Notes in Artificial Intelligence, 2003, 2637: 376- 387. 被引量:1
  • 5Abe S, Inoue T, Fast training of support vector machine by extracting boundary data [C] // Proceeding of the International Conference on Artificial Neural Networks (ICANN). 2001:308- 313. 被引量:1
  • 6Hu Q H, Yu D R, Xie Z X. Neighborhood Classifiers[J]. Expert System with Applications, 2008,34 (2): 866-876. 被引量:1
  • 7Hsu Chih-wei, Chang Chih-chung, I,in Chih-jen. A Practical Guide to Support Vector Classification[EB/OL]. http://home. eng. iastate, edu/- julied/classes/ee547/Handouts/SVMu- seguide, pdf. 被引量:1
  • 8Lin T Y. Granular Computing on binary relations I : data mining and neighborhood system[C]//Proc, of Rough Sets in Knowledge Discovery. Heidelberg, Germany: Physiea Verlag, 1998:107-121. 被引量:1
  • 9I.i Ye, Cai Yun ze, Li Yuan gui, et al. Rough Set Method for SVM Data Processing[C]// Proceeding of the 2004 IEEE Conference on Cybernetics and Intelligent System Singapore. 2004: 1039-1042. 被引量:1
  • 10胡清华.赵辉,于达仁.基于粗糙集的符号与数值属性的快速约简算法[C]//第七届中国Rough集与软计算学术会议.山西,太原,2007. 被引量:6

共引文献64

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部