期刊文献+

广义Rosenau-Kawahara方程的孤波解及其守恒律 被引量:8

Solitary Wave Solutions and Conserved Quantities for Generalized Rosenau-Kawahara Equation
下载PDF
导出
摘要 研究了一类重要的非线性发展方程—广义Rosenau-Kawahara方程,证明其具有2个物理守恒量,并用anstzee方法构造了广义Rosenau-Kawahara方程的一个双曲正割形式的孤波解。 In this paper, the authors study generalized Rosenau-Kawahara equation. A couple of conserved quantities is proved. And a solitary wave solution to the generalized Rosenau-Kawahara equation is obtained by the ansatze method.
出处 《西华大学学报(自然科学版)》 CAS 2013年第5期26-28,共3页 Journal of Xihua University:Natural Science Edition
基金 四川省教育厅青年基金项目(11ZB009)
关键词 广义Rosenau-Kawahara方程 anstitze方法 物理守恒量 孤波解 generalized Rosenau-Kawahara equation ansatze method physical conserved quantity solitary wave solution
  • 相关文献

参考文献1

二级参考文献25

  • 1M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, in: London Mathematical Society Lecture Notes, Cambridge Univer- sity Press, Cambridge (1991) p. 149. 被引量:1
  • 2P.K. Barreto, C.S.Q. Caldas, P. Gamboa, and J. Limaco, Electron. J. Diff. Equ. 2004 (35) (2004) 1. 被引量:1
  • 3A. Biswas and S. Konar, Appl. Math. Lett. 20 (2007) 1122. 被引量:1
  • 4A. Biswas, Appl. Math. Lett. 22 (2009) 208. 被引量:1
  • 5A. Biswas, Phys. Lett. A 372 (2008) 4601. 被引量:1
  • 6S.K. Chung, Appl. Anal. 69 (1998) 149. 被引量:1
  • 7S.K. Chung and S.N. Ha, Appl. Anal. 54 (1994) 39. 被引量:1
  • 8A. Clarkson, R.J. LeVeque, and R. Saxton, Stud. Appl. Math. 75 (1986) 95. 被引量:1
  • 9A. Esfahani, Phys. Lett. A 374 (2010) 3635. 被引量:1
  • 10R. Hirota and J. Satsuma, J. Phys. Soc. Jpn. 40 (1976) 611. 被引量:1

共引文献10

同被引文献60

  • 1王廷春,张鲁明.求解广义正则长波方程的守恒差分格式[J].应用数学学报,2006,29(6):1091-1098. 被引量:14
  • 2BISWAS A, TRIKI H, LABIDI M. Bright and dark solitons of the Rosenan-Kawahara equation with power law nonlinearity [ J ]. Physics of Wave Phenomena,2011,19 ( 1 ) :24 - 29. 被引量:1
  • 3ZUO J. Solitons and periodic solutions for the Rosenau-KdV and Rosenau-Kawahara equations[ J ]. Applied Mathematics and Computation, 21309,215(2) :835 -840. 被引量:1
  • 4LABIDI M, BISWAS A. Application of He Is principles to Rosenau- Kawahara equation [ J ]. Mathematics in Engineering, Science and Aerospace MESA,2009,2(2) :183 -197. 被引量:1
  • 5HU J, XU Y, HU B, et al. Two conservative difference schemes for Rosenau-Kawahara equation[ J]. Advances in Mathematical Physics, 2014:217393. 被引量:1
  • 6ZHOU Y L Application d" discrete functional analysis to the finite difference trethcxts[ M]. Beijing:Intemational Academic Pubhshers,1991. 被引量:1
  • 7Rosenau P. A quasi - continuous description of a nonlinear transmission line[ J]. Physica Scripta, 1986,34:827 - 829. 被引量:1
  • 8Rosenau P. Dynamics of dense discrete systems [ J]. Progress of Theoretical Physics, 1988,79 : 1028 - 1042. 被引量:1
  • 9Park M A. On the Rosenau equation [ J ]. Applied Mathematics and Computation, 1990,9 (2) : 145 - 152. 被引量:1
  • 10Omrani K, Abidi F, Achouri T, et al. A new conservative finite difference scheme for the Rosenau equation [ J ]. Appl Math Comput, 2008,201 ( 1/2 ) : 35 - 43. 被引量:1

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部