期刊文献+

Accelerating an adiabatic process by nonlinear sweeping

Accelerating an adiabatic process by nonlinear sweeping
下载PDF
导出
摘要 We investigate the acceleration of an adiabatic process with the same survival probability of the ground state by sweeping a parameter nonlinearly, fast in the wide gap region and slowly in the narrow gap region, in contrast to the usual linear sweeping. We find the expected acceleration both in the Landau-Zener tunneling model and in the adiabatic quantum computing model for factorizing the number N - 21. We investigate the acceleration of an adiabatic process with the same survival probability of the ground state by sweeping a parameter nonlinearly, fast in the wide gap region and slowly in the narrow gap region, in contrast to the usual linear sweeping. We find the expected acceleration both in the Landau-Zener tunneling model and in the adiabatic quantum computing model for factorizing the number N - 21.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期267-270,共4页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 10904017) the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090071120013) the Shanghai Pujiang Program, China (Grant No. 10PJ1401300)
关键词 quantum calculation quantum adiabatic algorithm FACTORIZATION nonlinear sweeping quantum calculation, quantum adiabatic algorithm, factorization, nonlinear sweeping
  • 相关文献

参考文献22

  • 1Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda 0 2001 Science 292 472. 被引量:1
  • 2Childs A M, Farhi E and Preskill J 2002 Phys. Rev. A 65 012322. 被引量:1
  • 3Roland J and Cerf N 2002 Phys. Rev. A 65 042308. 被引量:1
  • 4Steffen M, van Dam W, Hogg T, Breyta G and Chuang I 2003 Phys. Rev. Lett. 90 067903. 被引量:1
  • 5Sarandy M Sand Lidar 0 A 2005 Phys. Rev. Lett. 95250503. 被引量:1
  • 6Peng X, Liao Z, Xu N, Qin G, Zhou X, Suter 0 and Ou J 2008 Phys.Rev. Lett. 101 220405. 被引量:1
  • 7Xu N, Zhu J, Lu 0, Zhou X, Peng X and Ou J 2012 Phys. Rev. Lett. 108130501. 被引量:1
  • 8Georgeot Band Shepelyansky D L 2000 Phys. Rev. E 62 3504. 被引量:1
  • 9Georgeot Band Shepelyansky 0 L 2000 Phys. Rev. E 62 6366. 被引量:1
  • 10Tong 0 M, Singh K, Kwek L C and Oh C H 2007 Phys. Rev. Lett. 98 150402. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部