期刊文献+

用户偏好的室内环境舒适度智能控制方法仿真研究 被引量:4

Simulation and Research on Intelligent Control Method for Indoor Comfort Environment
下载PDF
导出
摘要 研究室内环境舒适度优化控制问题。室内热环境是一种具有多变量、强耦合、非线性、参数时变系统,难以采用传统的数学和仿真方法对其建模,当前控制方法难解决舒适和节能两个控制目标的矛盾,为此,提了一种基于用户偏好的室内环境舒适度智能控制方法。首先将室内环境舒适度优化问题看作一个多目标优化问题,然后根据用户偏好信息作为评价指标建立用户热/冷抱怨事件模型,最后通过遗传算法对室内舒适度控制系统的最优参数进行求解,解决了舒适和节能冲突难题,并通过仿真实验对控制方法进行测试。仿真结果表明,本文方法通过实时采集室内环境和用户偏好信息,通过智能、动态调节控制系统参数,使室内环境处于一种最舒适状态,克服传统方法不足,实验证明了本文控制方法的有效性。 Indoor environmental comfort optimization control problem was studied. The indoor thermal environ- ment is a kind of multivariable, strong coupling, nonlinear, time-varying system, it is difficult to use mathematical modeling and simulation method of the traditional, contradiction, the current control method is difficult to solve the comfort and energy of the two control objectives for this purpose, to a user preference of the indoor environment comfort based on intelligent control method. Firstly, the indoor environment comfort optimization problem as a nmlti-objective optimization problem, and then according to user preference information as evaluation refers to the establishment of user complaints hot / cold model, finally solved with genetic algorithm optimal parameters of indoor comfort control system, the problems of conflict will comfort and energy-saving is solved, and the control method was tested by the simulation experiment. The simulation results show that the method, through the real-time acqui- sition of the indoor environment and user preference information, through the intelligent, dynamic control system parameters, so that the indoor environment is one of the most comfortable state, to overcome the traditional method, the experiment proved the effectiveness of the method in this paper.
作者 杨娜
出处 《科学技术与工程》 北大核心 2013年第25期7557-7562,共6页 Science Technology and Engineering
关键词 室内环境 舒适度 用户偏好 遗传算法 indoor environment comfort user preference genetic algorithm
  • 相关文献

参考文献10

二级参考文献77

共引文献72

同被引文献17

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部