期刊文献+

几乎单DD-群(英文)

Almost Simple DD-groups
下载PDF
导出
摘要 研究几乎单的DD-群,证明了几乎单群G不是一个DD-群,如果G不是下列群中的一个:1)散在单群M22,J2,Co1,Fi′24,McL,Th,B,以及M12或者J2的自同构群;2)交错群A5,A6,A7,A9,A10,A16,S5,Aut(A6),S8,S10,或者An(62≤n≤205);3)L3(2),Aut(L3(3)),或者L2(q),其中q=4,5,7,9,11。 The main purpose is to investigate almost simple DD-groups.It proves that the almost simple group G is not a DD-group unless G is one of the following groups: 1) M22,J2,Co1,Fi′24,McL,Th,B,and the automorphism group of M12 or J2;2) A5,A6,A7,A9,A10,A16,S5,Aut(A6),S8,S10,or An(62≤n≤205);3) L3(2),Aut(L3(3)),or L2(q) for q=4,5,7,9,11.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期741-753,共13页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家重点基础研究发展计划(452101650122) 国家自然科学基金(11201194) 江西师范大学博士启动基金资助
关键词 几乎单群 重数 度数 DD-群 almost simple group multiplicity degree DD-group
  • 相关文献

参考文献17

  • 1Moreto A. Complex group algebras of finite groups: Brauer's problem 1. Adv Math, 2007, 28(1): 236-248. 被引量:1
  • 2Craven D. Symmetric group character degrees and hook numbers. Proc Lond Math Soc, 2008, 96(1): 26-50. 被引量:1
  • 3Berkovich Y, Chillag D, Herzog M. Finite groups in which the degrees of nonlinear irreducible characters are distinct. Proc Amer Math Soc, 1992, 115(4): 955-959. 被引量:1
  • 4Berkovich Y. Finite solvable groups in which only two nonlinear irreducible characters have equal degrees. J Algebra, 1996, 184(2): 584-603. 被引量:1
  • 5Berkovich Y, Kazarin L. Finite nonsolvable groups in which only two nonlinear irreducible characters have equal degrees. J Algebra, 1996, 184(2): 538-560. 被引量:1
  • 6Chillag D, Herzog M. Finite groups with almost distinct character degrees. J Algebra, 2008, 319(2): 716-729. 被引量:1
  • 7Qian G, Wang Y, Wei H. Finite solvable groups with at most two nonlinear irreducible characters of each degree. J Algebra, 2008, 320(8): 3172-3186. 被引量:1
  • 8Berkovich Y, Zhmud' E. Characters of finite groups, Part 2. Providence: American Mathematical Society, 1997. 被引量:1
  • 9Isaacs I M. Character theory of finite groups. New York: Dover Publication, 1994. 被引量:1
  • 10Conway J H, Curtis R T, Norton S P, et al. Atlas of finite groups. London: Oxford University Press, 1984. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部