期刊文献+

基于微结构纤芯的超低损耗多零色散点的高双折射光子晶体光纤 被引量:5

High Birefringence and Low Confinement Loss Photonic Crystal Fiber with Multiple Zero Dispersion Points Based on Micro-Structured Core
原文传递
导出
摘要 提出了一种新型的微结构纤芯的光子晶体光纤,在纤芯中引入10个呈矩形排列的小圆空气孔,包层空气孔呈阶梯渐增结构。采用全矢量有限元法,通过改变纤芯小圆空气孔的大小和二者之间的孔间距,研究了这种光纤的基模模场、双折射、限制损耗和色散特性。研究结果表明,当小圆半径r1=0.225 μm,孔间距Λ2=1.30 μm时,在波长1.55 μm处,双折射为3.22×10-2,限制损耗低至4.92×10-8 dB/m,且在0.6~2.0 μm之间可获得三个零色散点。另外,通过优化纤芯结构参数,在波长1.55 μm处,双折射最大值可达3.45×10-2,损耗最低达2.88×10-9 dB/m。该设计为在光纤通信、光纤传感方面的应用提供了理论基础。 A new kind of micro-structured core photonic crystal fiber with a rectangular array of ten air holes in the core region and the incremental cladding is proposed. Using the finite element method, the fundamental mode field, birefringence, confinement loss and dispersion characteristics are investigated simultaneously by changing the radii and pitches of the air holes in the core. Numerical results show that the birefringence and confinement loss are respectively about 3.22×10-2 and 4.92×10-8 dB/m at 1.55 μm when the small air hole radius is 0.225 μm and the cladding air hole pitch size is 1.30 μm, and three corresponding zero dispersion points can be obtained over the wavelength range from 0.6 μm to 2.0 μm. In addition, the largest birefringence can reach up to 3.45×10-2 and the confinement loss reduces down to 2.88×10-9 dB/m by optimizing the structural parameters. The proposed photonic crystal fiber has a broad prospect of applications in fiber-optic communications, fiber optic sensing and other fields.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第9期125-130,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61107052) 天津市高等学校科技发展基金(20110704)
关键词 光纤光学 光子晶体光纤 微结构纤芯 高双折射 低损耗 有限元法 fiber optics photonic crystal fiber micro-structured core high birefringence low confinement loss finite element method
  • 相关文献

参考文献9

二级参考文献107

共引文献91

同被引文献51

  • 1凤兰.基于有限元法的光子晶体理论[J].内蒙古石油化工,2015,41(20):25-26. 被引量:1
  • 2张德生,董孝义,张伟刚,王志.用阶跃有效折射率模型研究光子晶体光纤色散特性[J].物理学报,2005,54(3):1235-1240. 被引量:16
  • 3方宏,娄淑琴,郭铁英,简水生.一种新结构高双折射光子晶体光纤[J].光学学报,2007,27(2):202-206. 被引量:26
  • 4P Russell. Photonic crystal fibers [J]. Science, 2003, 299 (5605) :358-362. 被引量:1
  • 5M Baumgartl, F Jansen, F Stutzki, et al. High average and peak power femtosecond large-pitch photonic-crystal-fiber laser [J]. Opt Lett, 2011, 36(2): 244-246. 被引量:1
  • 6J Villatoro, V Finazzi, G Badenes, et al. Highly sensitive sensors based on photonie crystal fiber modal interferorrleters[J]. Journal of Sensors, 2009. 被引量:1
  • 7O Levi, M M Lee, J Zhang, et al. Sensitivity analysis of a photonic crystal structure /or index-of-refraction sensing[C]. SP1E, 2007. 6447. 被引量:1
  • 8O Frazao, J L Santos, F M Arafijo, et al. Optical sensing with photonic crystal fibers[J]. Laser and Photonics Reviews, 2008, 2 (6) : 449-459. 被引量:1
  • 9D J J Hu, J L Lira, Y Cui, et al. Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber [J]. IEEE Photonics Journal, 2012, 4(5): 1248-1255. 被引量:1
  • 10Yinian Zhu, Ping Shum, Huiwen Bay, et al. Strain insensitive and high temperature long-period gratings inscribed in photonic crystal fiber[J]. Opt Lett, 2005, 30(4): 367-369. 被引量:1

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部