期刊文献+

High efficiency beam combination of 4.6-μm quantum cascade lasers 被引量:1

High efficiency beam combination of 4.6-μm quantum cascade lasers
原文传递
导出
摘要 The quantum cascade laser (QCL), a potential laser source for mid-infrared applications, has all of the advantages of a semiconductor laser, such as small volume and light weight, and is driven by electric power. However, the optical power of a single QCL is limited by serious self-heating effects. Therefore, beam combination technology is essential to achieve higher laser powers. In this letter, we demonstrate a simple beam combination scheme using two QCLs to extend the output peak power of the lasers to 2.3 W. A high beam combination efficiency of 89% and beam quality factor of less than 5 are also achieved. The quantum cascade laser (QCL), a potential laser source for mid-infrared applications, has all of the advantages of a semiconductor laser, such as small volume and light weight, and is driven by electric power. However, the optical power of a single QCL is limited by serious self-heating effects. Therefore, beam combination technology is essential to achieve higher laser powers. In this letter, we demonstrate a simple beam combination scheme using two QCLs to extend the output peak power of the lasers to 2.3 W. A high beam combination efficiency of 89% and beam quality factor of less than 5 are also achieved.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第9期49-51,共3页 中国光学快报(英文版)
基金 This work was supported by the National Natural Science Foundation of China (Nos. 61076064 and 61176046), the International Science Technology Cooperation Program of China (No. 2013DFR00730), and the Hundred Talents Program of Chinese Academy of Sciences for their financial support.
关键词 Infrared devices Infrared devices
  • 相关文献

参考文献14

  • 1R. F. Curl, F. Capasso, C McManus, R. Lewicki, M. F. K. Tittel, Chem. Phys. Gmachl, A. A. Kosterev, B. Pusharsky, G. Wysocki, and Lett. 487, 1 (2010). 被引量:1
  • 2A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, Appl. Phys. B 90~ 165 (2008). 被引量:1
  • 3D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, Appl. Phys. B 75, 343 (2002). 被引量:1
  • 4F. Capasso, Opt. Eng. 49, 111102 (2010). 被引量:1
  • 5M. Razeghi, Y. B. Bai, S. Slivken, and S. R. Darvish, Opt. Eng. 49, 11103 (2010). 被引量:1
  • 6Y. B. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, Nat. Photonics 4,99 (2010). 被引量:1
  • 7J. Zhang, H. Peng, X. Fu, Y. Liu, L. Qin, G. Miao, and L. Wang, Opt. Express 21, 3627 (2013). 被引量:1
  • 8R. K. Huang, B. Charm, J. Burgess, M. Kaiman, R. Over- man, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012). 被引量:1
  • 9S. Hugger, F. Fuchs, R. Aidam, W. Bronner, R. Loesch, Q. Yang, N. Schulz, J. Wagner, E. Romasew, M. Raab, and H. D. Tholl, Proc. SPIE 7325, 73250H (2009). 被引量:1
  • 10J. Montoya, S. J. Augst, K. Creedon, J. Kansky, T. Y. Fan, and A. Sanchez-Rubio, Appl. Opt. 51, 1724 (2012). 被引量:1

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部