摘要
通过建立液态钢渣粒化过程的物理和数学模型,阐述液态钢渣气淬粒化工艺的粒化机理,利用FLUENT软件对不同条件下粒化过程流场进行数值模拟,模拟结果表明:氮气射流分为射流初始段、射流基本段和射流消散段三个阶段;射流的最高速度分布在射流中心线上,且速度的大小与射流的径向距离成反比;射流的冲击动能以及射流的流场分布规律对液态钢渣的粒化效果影响显著;拉瓦尔喷嘴的理想直径为D=10 mm;马赫数的增加可提高射流的冲击动能,有利于钢渣的粒化。
Mathematical and physical models of granulating process were established to elaborate the granulating mechanism of the gas quenching process of liquid steel slag, and flow fields of granulation process under different conditions were calculated through the FLUENT software. The simulation results show that N2 jet flow can be divided into three phases, namely the initial phase, fundamental phase, and dissipation phase. The maximum velocity distributes on the axis of the jet flow, and the velocity is in- versely proportional to radial distance. The impact kinetic energy and the flow field distribution of the N2 jet flow have a significant influence on the effect of granulation. The ideal diameter of the Laval nozzle is 10 mm. The increase of maeh number is helpful to enhance the impact kinetic energy of the jet flow, and thus contributes to the steel slag granulation.
出处
《钢铁钒钛》
CAS
北大核心
2013年第4期30-35,共6页
Iron Steel Vanadium Titanium
基金
河北省应用基础重点研究项目(10965633D)
唐山市科技计划项目(12140208A-20)
关键词
钢渣
气淬粒化
流场
喷嘴直径
马赫数
数值模拟
steel slag, gas quenching and granulating, flow field, nozzle diameter, mach number, numericalsimulation