期刊文献+

Sage_Husa自适应滤波在大方位失准角初始对准的研究 被引量:6

Research on initial alignment for large azimuth misalignment angle with Sage_Husa adaptive filtering
下载PDF
导出
摘要 由于光纤惯导系统导航精度不高,方位角常为大角度,因此系统初始对准的滤波方程为非线性的,为改善非线性模型下初始对准的精度,提出了一种改进Sage_Husa自适应卡尔曼滤波方法并应用于光纤惯导系统初始对准中。建立了大方位失准角初始对准的非线性误差模型,给出了Sage_Husa自适应卡尔曼滤波方程,对Sage_Husa自适应卡尔曼滤波不适合用在非线性滤波的缺陷进行了改进,建立系统噪声统计的估值器,对非线性误差方程进行了改进Sage_Husa自适应卡尔曼滤波仿真。仿真结果表明:改进Sage_Husa自适应卡尔曼滤波能够很好地处理初始对准中的非线性问题,提高初始对准精度,方位失准角误差估计精度较EKF提高27%。 The azimuth was often a large angle because navigation accuracy of fiber-optic inertial navigation system was not high, and the filtering equations of initial alignment were non-linear. In order to improve the initial alignment accuracy of nonlinear models, a improved Sage_Husa adaptive kalman filtering method was put forward, and applied to initial alignment of fiber-optic inertial navigation system. Established initial alignment nonlinear model of large azimuth misalignment angle, contributed the system noise statistics estimators, and used improved Sage_Husa adaptive kalman filtering to simulate for nonlinear error equations. The simulation results show that the improved Sage_Husa adaptive kalman filtering could deal with nonlinear problems, improve the accuracy of initial alignment. Azimuth misalignment angle error estimation precision improved 27% than EKF.
作者 杨咚 余伟
机构地区 海军驻昆明
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第8期2197-2201,共5页 Infrared and Laser Engineering
基金 总装"十二五"预研课题(51309030103)
关键词 光纤惯导系统 初始对准 Sage_Husa自适应卡尔曼滤波 非线性 fiber-optic initial navigation system initial alignment Sage_Husa adaptive kalman filter nonlinear
  • 相关文献

参考文献8

二级参考文献13

  • 1龚时华,张严.有色噪声条件下的实用Kalman滤波方法研究[J].鱼雷技术,2006,14(2):20-22. 被引量:5
  • 2张涛,徐晓苏.基于模糊自适应的组合导航系统信息融合算法[J].中国惯性技术学报,2007,15(2):197-201. 被引量:9
  • 3万德均,房建成,王庆.GPS动态滤波的理论、方法及其应用[M].南京:江苏科学技术出版社,2000. 被引量:2
  • 4HAYTHAM Q, LEONHARD R. Unscented and extended Kalman estimators for non-linear indoor tracking using distance measurements [J]. Positioning Navigation and Communication, 2007 ( 3 ) : 177-181. 被引量:1
  • 5WAN E A, VAN DER MERWE R. The unscented Kalman filter for nonlinear estimation [ J ]. Adaptive Systems for Signal Processing, Communications and Control Symposium, 2000 : 153-158. 被引量:1
  • 6VAN DER MERWE R, WAN E A. The square-root unscented kalman filter for state and parameter estimation [J ]. Acoustics, Speech and Signal Processing Proceedings, 2001,6:3461-3464. 被引量:1
  • 7GORDON N, SALMOND D J, SMITH A F M. Novel approach to nonlinear and non-Gaussian Bayesian state estimarion [ J ]. IEEE Proceedings- F, 1993, 140 (2) : 107-113. 被引量:1
  • 8LIU SH L. Single observer passive location using phase rate of change with the modified UKF [ J ]. Communications, Circuits and Systems Proceedings, 2006, 1: 311-314. 被引量:1
  • 9SIMANDL M, DUNIIK J, KRAL L. Derivative-free estimation methods: new results and performance analysis [R]. PlzeN: 2007:35-39. 被引量:1
  • 10刘国海,施维,李康吉.插值改进EKF算法在组合导航中的应用[J].仪器仪表学报,2007,28(10):1897-1901. 被引量:25

共引文献62

同被引文献48

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部