期刊文献+

基于优化决策树的化工企业风险监测算法 被引量:2

Chemical Enterprise Production Steady Quantitative Measurement Based on Optimization Decision Tree
下载PDF
导出
摘要 化工企业生产过程中的数据变化带有很强的随机性和非线性。国内的大型化工企业在生产运行中产生了大量的数据,数据属性众多,对数据属性的监控较为被动和片面。传统的基于主成份分析的数据属性分析方法,在面对大量化工数据时,数据主成份特征不明显,与危险相关的属性很可能被弱化,造成检测不准。为此提出一种区域PSO优化决策的化工企业异常情况检测方法,在使用主成份分析法对影响因素进行综合评定的基础上,在经过PSO优化权重系数后的决策树构造方法对数据的复杂情况进行寻优处理,消除大数据量的影响。实验结果证明,经优化的决策树方法能够将更加准确地对化工企业的生产平稳度进行综合控制与分析,对实际的生产有很好的借鉴作用。 Research the accurate risk monitoring of chemical enterprise.This paper put forward a chemical enterprise risk monitoring algorithm based on regional PSO optimization decision-making.The algorithm used the principal component analysis to comprehensively evaluate the influence factors,and used the decision tree construction method to optimization the complex situation of data after PSO optimizing the weight coefficients The experimental results show that the algorithm can make more accurate comprehensive control and analysis to the production smooth degree of chemical enterprises.
作者 林红 孙雅娟
出处 《计算机仿真》 CSCD 北大核心 2013年第8期368-371,共4页 Computer Simulation
关键词 生产平稳 优化决策树 主成份分析 Smooth production Optimization decision tree Principal component analysis
  • 相关文献

参考文献6

  • 1郭岩,白硕,于满泉.Web使用信息挖掘综述[J].计算机科学,2005,32(1):1-7. 被引量:50
  • 2R Cooley, J Srivastava. Grouping web page references into transac- tions for mining world wide web browsing patterns [ C ]. Proceed- ings of KDEX'97, NewportBeaeh, CA, USA, 1997:2-7. 被引量:1
  • 3T Su and J Dy. A Deterministic Method for Initializing K - Means Clustering[ C ]. In Proceedings of the 16th IEEE International Con- ference on Tools with Artificial Intelligence, Boca Raton, Florida, 2004 : 784 - 786. 被引量:1
  • 4Krista Rizman, Zalik. An efficient K -means clustering algorithm [ J ]. Pattern Recognition Letters, 2008,29 (9) : 1385 - 1391. 被引量:1
  • 5T Su and J Dy. A Deterministie Method for Initializing K - Means Clustering[ C] In Proceedings of the 16th IEEE International Con- ference on Tools with Artificial Intelligence, Boca Raton, Florida, 2004:784 - 786. 被引量:1
  • 6张冉,赵成龙.ARIMA模型在网络流量预测中的应用研究[J].计算机仿真,2011,28(2):171-174. 被引量:47

二级参考文献78

  • 1雷霆,余镇危.一种网络流量预测的小波神经网络模型[J].计算机应用,2006,26(3):526-528. 被引量:33
  • 2谭晓玲,许勇,张凌,梅成刚,刘兰.网络流量短期预测方法的研究与应用[J].计算机工程与设计,2006,27(8):1341-1342. 被引量:7
  • 3Srivastava J,Cooley R,Deshpande M,Tan P-N. Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. SIGKDD Explorations,ACM SIGKDD,Jan. 2000 被引量:1
  • 4Mobasher B. Web Usage Mining and Personalization Draft Chapter in Practical Handbook of Internet Computing. In: Munindar P. Singh,ed. CRC Press. To appear in 2004. http://maya. cs. depaul. edu/~mobasher/pubs-subject. html # usage-mining 被引量:1
  • 5Cooley R,Mobasher B,Srivastava J. Data preparation for mining world wide web browsing patterns. The Journal of Knowledge and Information Systems, 1999, 1 (1). http ://maya. cs. depaul.edu/~mobasher/papers/webminer-kais. ps 被引量:1
  • 6Kleinberg J M. Authoritative sources in a hyperlinked environment. In: Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998 被引量:1
  • 7Chen M S,Park J S,Yu P S. Data mining for path traversal patterns in a Web environment. In:Proc. of the 16th Intl. Conf. on Distributed Computing Systems, 1996. 385~ 392 被引量:1
  • 8Mannila H,Toivonen H. Discovering generalized episodes using minimal occurrences. In: Proc. of the Second Int'l Conf. on Knowledge Discovery and Data Mining,Portland,Oregon, 1996.146~151 被引量:1
  • 9Yan T,Jacobsen M,Garcia-Molina H,Dayal U. From user access patterns to dynamic hypertext linking. In:Fifth Intl. World Wide Web Conf. Paris, France, 1996 被引量:1
  • 10World wide web committee web usage characterization activity.http://www. w3. org/WCA. 被引量:1

共引文献95

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部